Skip to main content
Log in

Thermal latent coordination compounds

II. The thermal degradation of imidazole and pyrazole adducts of metal(II) picolinate and quinaldinate

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Complexes of the type M(Pa)2(HAz)2 and M(QA)2(HAz)2 (M=cobalt(II) and nickel(II); HPa=picolinic acid, HQa=quinaldic acid; HAz=azoles like imidazole (Him), pyrazole (HPz), benzimidazole (HBzIm) etc.) show a similar thermal behaviour. In the first step of decomposition the corresponding azolinium picolinates or quinaldinates (H2AzPa, H2AzQa) are split off with formation of polymeric mixed ligand complexes M(Pa)(Az) or M(Qa)(Az). X-ray analysis of Co(Qa)2(HBzIm)2 XIIIa illustrates a proton transfer and a subsequent thermal removal of benzimidazolinium quinaldinate (H2BzImQa): Hydrogen bridges from pyrrole nitrogen of the benzimidazole to the non-coordinated oxygen of the quinaldinate predetermine the thermal initiated proton transfer. The high volatility of the heterocyclic acids and the nitrogen coordination are responsible for the formation of the mixed ligand complex Co(Qa)(BzIm) XIVa.

Exceptions are the complexes M(Pa)2(HPz)2 XIa-b and M(Qa)2(HIm)2 XVIIa-b. Pyrazole is eliminated from the complexes XIa-b with formation of the solvent-free inner complex M(Pa)2 XIIa-b. From compounds XVIIIa-b quinaldic acid or their decomposition products are split off and a high temperature modification of M(Im)2 XVIIIa-b is formed at elevated temperature. XVIIIa-b are decomposed to the cyanides M(CN)2 similarly to the thermal behaviour of Cu(Im).

In the first step the thermal degradation of imidazole and pyrazole adducts of copper(II) picolinates and quinaldinates is characterized by the elimination of azoles. The reason for this thermal behaviour is the weaker coordination of the azole heterocycles in copper chelate compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Österberg, Coord. Chem. Rev., 12 (1974) 309.

    Article  Google Scholar 

  2. R. G. Bhirud and T. S. Srivastava, Inorg. Chim. Acta, 173 (1990) 121.

    Article  CAS  Google Scholar 

  3. A. Dobry-Duclaux and A. May, Bull. Soc. Chim. Biol., 52 (1970) 1447.

    CAS  Google Scholar 

  4. K. Yamaguchi and D. T. Sawyer, Inorg. Chem., 24 (1985) 971.

    Article  CAS  Google Scholar 

  5. T. Matsushita, L. Spencer and D. T. Sawyer, Inorg. Chem., 27 (1988) 1167.

    Article  CAS  Google Scholar 

  6. E. Libby, R. J. Webb, W. E. Streib, K. Folting, J. C. Huffman, D. N. Hendrickson and G. Christou, Inorg. Chem., 28 (1989) 4037.

    Article  CAS  Google Scholar 

  7. S. C. Chang, J. K. H. Ma, J. T. Wang and N. C. Li, J. Coord. Chem., 2 (1972) 31.

    Article  CAS  Google Scholar 

  8. H. Loiseleur, G. Thomas, B. Cheverier and D. Grandjean, J. Chem. Soc. Chem. Commun., (1967) 182.

  9. A. Takenaka, H. Utsumi, N. Ishihara, A. Furusaki and I. Nitta, Nippon Kagaku Zasshi, 91 (1970) 921.

    CAS  Google Scholar 

  10. R. D. Gillard, S. H. Laurie and F. S. Stephens, J. Chem. Soc., A (1968) 2588.

    Google Scholar 

  11. A. Takenaka, H. Utsumi, T. Yamamoto, A Furusaki and I. Nitta, Nippon Kagaku Zassi, 91 (1970) 928.

    CAS  Google Scholar 

  12. A. Böttcher, M. Döring, E. Uhlig, M. Fedtke, K. Dathe and B. Nestler, PCT-Patent 1991, WO 91/13925 from 19.09.1991.

  13. M. Döring, W. Ludwig, M. Meinert and E. Uhlig, Z. anorg. allg. Chem., 595 (1991) 45.

    Article  Google Scholar 

  14. M. Döring, W. Ludwig, E. Uhlig, S. Wocadlo and U. Müller, Z. anorg. allg. Chem., 611 (1992) 61.

    Article  Google Scholar 

  15. W. Ludwig, M. Döring, R. Fischer, A. Friedrich, W. Seider, E. Uhlig and D. Walther, J. Thermal Anal., 42 (1994) 443.

    Article  Google Scholar 

  16. M. Döring, W. Ludwig and H. Görls, J. Thermal Anal., 42 (1994) 443.

    Article  Google Scholar 

  17. W. Ludwig, J. Thermal Anal., 8 (1975) 75.

    Article  CAS  Google Scholar 

  18. MOLEN, An Interactive Structure Solution Procedure, Enraf-Nonius, Delft, The Netherlands 1990.

  19. G. M. Sheldrick: SHELXS, Program for Crystal Structure Solution, Göttingen 1980.

  20. M. Döring, Habilitation Thesis, University Jena 1994.

  21. A. Gadet, Acta Crystallogr., B30 (1974) 349.

    Google Scholar 

  22. H. L. Henrikson, Acta Crystallogr., B33 (1977) 1947.

    Google Scholar 

  23. S. J. Ashcroft and C. T. Mortimer, ‘Thermochemistry of Transition Metal Complexes’, Academic Press, New York 1970.

    Google Scholar 

  24. M. Döring and H. Görls, unpublished results.

  25. H. A. Staab and W. Rohr, Newer Methods of Prep. Org. Chem., 6 (1967) 61C.

    Google Scholar 

  26. I. B. Bersucker, Coord. Chem. Rev., 14 (1974) 357.

    Article  Google Scholar 

  27. Sigwart, P. Kroneck and P. Hemmerich, Helv. Chim. Acta, 53 (1970) 177.

    Article  CAS  Google Scholar 

  28. H. Irving and R. J. P. Wiliams, J. Chem. Soc. (1953) 3192.

  29. R. Lehnert and F. Seel, Z. anorg. allg. Chem., 444 (1978) 91.

    Article  CAS  Google Scholar 

  30. I. Bertini, L. Banci, M. Piccioli and C. Luchinat, Coord. Chem. Rev., 100 (1990) 67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For Part I see Ref. [8].

We are grateful to the Fonds der Chemischen Industrie for financial support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Döring, M., Wuckelt, J., Ludwig, W. et al. Thermal latent coordination compounds. Journal of Thermal Analysis 50, 569–586 (1997). https://doi.org/10.1007/BF01979029

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01979029

Keywords

Navigation