Skip to main content
Log in

Paleolimnology of the McMurdo Dry Valleys, Antarctica

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The McMurdo Dry Valleys presently contain more than 20 permanent lakes and ponds, which vary markedly in character. All, with the exception of a hypersaline pond, have a perennial ice-cover. The dry valley lakes, and lakes in other ice-free regions of continental Antarctica, are unique on this planet in that they consistently maintain a thick year-round ice cover (2.8–6.0 m) over liquid water. The persistent ice covers minimize wind-generated currents and reduce light penetration, as well as restricting sediment deposition into a lake and the exchange of atmospheric gases between the water column and the atmosphere. From a paleolimnological perspective, the dry valley lakes offer an important record of catchment and environmental changes. These lakes are also modern-day equivalents of periglacial lakes that were common during glacial periods at temperature latitudes. The present lakes are mostly remnants of larger glacial lakes that occupied the valleys in the past, perhaps up to 4.6 Ma ago. Two of the valleys contain evidence of being filled with large glacial lakes within the last 10000 years. Repeated drying and filling events since then have left a characteristic impression on the salt profiles of some lakes creating a unique paleo-indicator within the water column. These events are also marked in the sediments by the concentration and dilution of certain chemical constituents, particularly salts, and are also corroborated by carbonate speciation and oxygen isotope analysis. Stratigraphic analysis of dry valley lake sediments is made difficult by the occurrence of an ‘old carbon’ reservoir creating spurious radiocarbon dates, and by the high degree of spatial variability in lake sedimentation. From a biological perspective, the lakes are relatively simple, containing various taxa of planktonic and benthic microorganisms, but no higher forms of life, which is an advantage to paleolimnologists because there is no bioturbation in the sediments. Useful biological paleo-indicators found in the sediments include cyanobacterial filament sheaths, diatom frustules and other eukaryotic algal cells, protozoan cysts, photosynthetic pigments, and minerals (e.g. carbonates) associated with microbial activity. Future work will benefit from fully characterizing the connection between the ice covers, environmental conditions, and paleo-indicators, thereby allowing refinement of inferences made concerning the paleoenvironment. New dating techniques need to be tested in this environment to overcome the problems associated with radiocarbon dating. The establishment of a detailed and focused paleolimnological campaign is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allnutt, F. T. C., B. C. Parker, K. G. Seaburg & G. M. Simmons Jr., 1981.In situ nitrogen (C2H2)-fixation in lakes of Southern Victoria Land, Antarctica. Hydrobiol. Bull. 51: 99–109.

    Google Scholar 

  • Andersen, D. W., R. A. Wharton Jr. & S. W. Squyres, 1993. Terrigenous clastic sedimentation in Antarctic Dry-Valley lakes. In W. Green & E. I. Friedmann (eds), Physical and Biogeochemical Processes in Antarctic Lakes. Ant. Res. Series. AGU. 59: 71–82.

  • Angino, E. E. & K. B. Armitage, 1963. A geochemical study of Lakes Bonney and Vanda, Victoria Land, Antarctica. J. Geol. 71: 89–95.

    Google Scholar 

  • Angino, E. E., K. B. Armitage & J. C. Tash, 1965. A chemical and limnological study of Lake Vanda, Victoria Land, Antarctica. The University of Kansas Science Bulletin XLV: 1097–1118.

    Google Scholar 

  • Armitage, K. B. & H. B. House, 1962. A limnological reconnaissance in the area of McMurdo Sound, Antarctica. Limnol. Oceanogr. 7: 36–41.

    Google Scholar 

  • Awramik, S. M., L. Margulis & E. S. Barghoorn, 1976. Evolutionary processes in the formation of stromatolites. In M. R. Walter (ed), Stromatolites, Elsevier, Amsterdam: 149–162.

    Google Scholar 

  • Barrett, P. J., G. W. Grindley & P. N. Webb, 1972. The Beacon Supergroup of east Antarctica. In R. J. Adie (ed) Antarctic Geology and Geophysics. International Union of Geological Sciences, Series B: 319–332.

  • Baublis, J. A., R. A. Wharton Jr. & P. A. Volz, 1991. Diversity of micro-fungi isolated in an antarctic dry valley. J. Basic Microbiol. 31: 10–20.

    Google Scholar 

  • Bell, R. A. I., 1969. Lake Miers, South Victoria Land, Antarctica. N.Z. J. Geol. Geophys. 10: 540–556.

    Google Scholar 

  • Bird, M., A. Chivas, C. Radnell & H. Burton, 1991. Sedimentological and stable-isotope evolution of lakes in the Vestfold Hills, Antarctica. Palaeogeogr. Palaeoclim. Palaeoecol. 84: 109–130.

    Google Scholar 

  • Black, R. F. & C. J. Bowser, 1969. Salts and associated phenomena of the termini of the Hobbs and Taylor Glaciers, Victoria Land, Antarctica. International Union of Geology and Geophysics. Commission on Snow and Ice. Pub. 79: 226–238.

  • Björck, S., C. Hjort, Ó. Ingólfsson & G. Skog, 1991. Radiocarbon dates from the Antarctic Peninsula region — Problems and potential. In J. J. Lowe (ed) Radiocarbon Dating: Recent Applications and Future Potential. Quaternary Proceedings No. 1, Quaternary Research Association, Cambridge: 55–65.

    Google Scholar 

  • Blake, W. Jr., 1989. Inferences concerning climatic change from a deeply frozen lake on Rundfjeld, Ellesmere Island, Arctic Canada. J. Paleolim. 2: 41–54.

    Google Scholar 

  • Brady, H. T., 1982. Late Cenozoic history of Taylor and Wright Valleys and McMurdo Sound inferred from diatoms in Dry Valley Drilling Project cores. In C. Craddock (ed), Antarctic Geoscience. University of Wisconsin Press, Madison: 1123–1131.

    Google Scholar 

  • Bradley, J. & D. F. Palmer, 1967. Ice-cored moraines and ice diapirs, Lake Miers, Victoria Land, Antarctica. N.Z. J. Geol. Geophys. 10: 599–623.

    Google Scholar 

  • Brock, T. D., 1978. Thermophilic microorganisms and life at high temperatures. Springer-Verlag, N.Y., 468 pp.

    Google Scholar 

  • Bromley, A. M., 1985. Weather observations Wright Valley, Antarctica, N.Z. Meteorological Service, Information Publication 11, 37 pp.

  • Brook, E. J., M. D. Kurz, R. P. Ackert Jr., G. H. Denton, E. T. Brown, G. M. Raisbeck & F. Yiou, 1993. Chronology of Taylor Glacier advances in Arena Valley, Antarctica, usingin situ cosmogenic3He and10Be. Quat. Res. 39: 11–23.

    Google Scholar 

  • Burton, H. R., 1981. Chemistry, physics and evolution of Antarctic saline lakes: a review. Hydrobiologia 82: 339–362.

    Google Scholar 

  • Bydder, E. L. & R. Holdsworth, 1977. Lake Vanda (revisited). N.Z. J. Geol. Geophys. 20: 1027–1032.

    Google Scholar 

  • Calkin, P. E. & C. Bull, 1967. Lake Vida, Victoria Valley, Antarctica. J. Glaciol. 6: 833–836.

    Google Scholar 

  • Carlson, C. A., F. M. Phillips, D. Elmore & H. W. Bentley, 1990. Chlorine-36 tracing of salinity sources in the Dry Valleys of Victoria Land, Antarctica. Geochim. Cosmochim. Acta. 54: 311–318.

    Google Scholar 

  • Cartwright, K. & H. J. H. Harris, 1981. Hydrology of the dry valley region, Antarctica. In L. D. McGinnis (ed) Dry Valley Drilling Project. Ant. Res. Series., Amer. Geopys. Union, Wash., D.C. 33: 193–214.

    Google Scholar 

  • Cathey, D. D., B. C. Parker, G. M. Simmons Jr., W. H. Yongue & M. R. Van Brunt, 1981. The microfauna of algal mats and artificial substrates in Southern Victoria Land lakes of Antarctica. Hydrobiologia 85: 3–15.

    Google Scholar 

  • Chinn, T. J. H., 1993. Physical hydrology of the dry valley lakes. In W. Green & E. I. Friedmann (eds), Physical and Biogechemical Processes in Antarctic Lakes. Ant. Res. Series. AGU. 59: 1–52.

  • Chinn, T. J. H., 1982. Hydrology and climate in the Ross Sea area. J. Royal Soc. N.Z. 11: 373–386.

    Google Scholar 

  • Claridge, G. G. C. & I. B. Campbell, 1977. The salts in antarctic soils, their distribution and relationship to soil processes. Soil Sci. 123: 377–384.

    Google Scholar 

  • Clayton-Greene, J. M., C. H. Hendy & G. H. Denton, 1987. The origin of drift mounds in Miers Valley, Antarctica. Antarct. J. 22: 59–61.

    Google Scholar 

  • Clayton-Greene, J. M., C. H. Hendy & A. G. Hogg, 1988. The chronology of a Wisconsin-aged proglacial lake in the Miers Valley, Antarctica. N.Z. J. Geol. Geophys. 31: 353–361.

    Google Scholar 

  • Clow, G. D., C. P. McKay, G. M. Simmons Jr. & R. A. Wharton Jr., 1988. Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica. J. Climate 1: 715–728.

    Google Scholar 

  • Cutfield, S. K., 1974. Hydrological aspects of Lake Vanda, Wright Valley, Victoria Land, Antarctica. N.Z. J. Geol. Geophys. 17: 645–657.

    Google Scholar 

  • Decker, E. R. & G. J. Bucher, 1982. Preliminary geothermal studies in the Ross Island-Dry Valley region. In C. Craddock (ed) Antarctic Geoscience, University of Wisconsin Press, Madison: 887–894.

    Google Scholar 

  • DeMaster, D. J., R. B. Dunbar, L. I. Gordon, A. R. Leventer, J. M. Morrison, D. M. Nelson, C. A. Nittrouer & W. O. Smith Jr., 1992. Cycling and accumulation of biogenic silica and organic matter in high-latitude environments: the Ross Sea. Oceanography 5: 146–153.

    Google Scholar 

  • Denton, G. H., R. L. Armstrong & M. Stuiver, 1971. The late Cenozoic glacial history of Antarctica. In K. K. Turekian (ed) The late Cenozoic glacial ages. Yale University Press, New Haven, Conn.: 267–306.

    Google Scholar 

  • Denton, G. H., J. G. Bockheim, S. C. Wilson & M. Stuiver, 1989. Late Wisconsin and early Holocene glacial history, inner Ross embayment, Antarctica. Quat. Res. 31: 151–182.

    Google Scholar 

  • Denton, G. H., M. L. Prentice, D. E. Kellogg & T. B. Kellogg, 1984. Late Tertiary history of the Antarctic ice sheet: Evidence from the dry valleys. Geology 12: 263–267.

    Google Scholar 

  • Domack, E. W., A. J. T. Jull, J. B. Anderson, T. W. Linick & C. R. Williams, 1989. Application of tandem accelerator mass-spectrometer dating to late Pleistocene-Holocene sediments of the East Antarctic continental shelf. Quat. Res. 31: 277–287.

    Google Scholar 

  • Golubic, S., 1976. Organisms that build stromatolites. In M. R. Walter (ed), Stromatolites, Elsevier, Amsterdam: 113–126.

    Google Scholar 

  • Gordon, J. E. & D. D. Harkness, 1992. Magnitude and geographic variation of the radiocarbon content in antarctic marine life: implications for reservoir corrections in radiocarbon dating. Quat. Sci. Rev. 11: 697–708.

    Google Scholar 

  • Green, W. J., 1982. Development of the chemical composition of a closed basin antarctic lake. EOS (abstract) 63: 66.

    Google Scholar 

  • Green, W. J. & D. E. Canfield, 1984. Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochim. Cosmochim. Acta. 48: 2457–2467.

    Google Scholar 

  • Green, W. J., M. Angle & K. Chave, 1988. The geochemistry of Antarctic streams and their role in the evolution of four lakes in the McMurdo Dry Valleys. Geochim. Cosmochim. Acta. 52: 1265–1274.

    Google Scholar 

  • Green, W. J., T. J. Gardner, T. G. Ferdelman, M. P. Angle, L. C. Varner & P. Nixon, 1989. Geochemical processes in the Lake Fryxell Basin (Victoria Land, Antarctica). Hydrobiologia 172: 129–148.

    Google Scholar 

  • Hammar, J., 1989. Freshwater ecosystems of polar regions: Vulnerable resources. Ambio XVIII: 6–22.

    Google Scholar 

  • Harris, H. J. H., K. Cartwright & T. Torii, 1979. Dynamic chemical equilibrium in a polar desert pond: a sensitive index of meteorological cycles. Science 204: 301–303.

    Google Scholar 

  • Henderson, R. A., W. M. Prebble, R. A. Hoare, K. B. Popplewell, D. A. House & A. T. Wilson, 1965. An ablation rate for Lake Fryxell, Victoria Land, Antarctica. J. Glaciol. 6: 129–133.

    Google Scholar 

  • Hendy, C. H., T. R. Healy, E. M. Rayner, J. Shaw & A. T. Wilson, 1979. Late Pleistocene glacial chronology of the Taylor Valley, Antarctica, and the global climate. Quat. Res. 11: 172–184.

    Google Scholar 

  • Hendy, C. H., A. T. Wilson, K. B. Popplewell & D. A. House, 1977. Dating of geochemical events in Lake Bonney, Antarctica, and their relation to glacial and climate changes. N.Z. J. Geol. Geophys. 20: 1103–1122.

    Google Scholar 

  • Hervey, S. P., 1984. A study of Antarctic remote site automatic weather station data (1980–1981) from the Ross Ice Shelf area. MS thesis, Dept. of Meteorology, Naval Postgraduate School, 170 pp.

  • Heywood, R. B., 1984. Antarctic inland waters. Antarct. Ecol. 1: 279–344.

    Google Scholar 

  • Hoare, R. A., K. B. Popplewell, D. A. House, R. A. Hendersen, W. Prebble & A. T. Wilson, 1964. Lake Bonney, Taylor Valley, Antarctica: a natural solar energy trap. Nature 202: 886–888.

    Google Scholar 

  • Jones, L. M. & G. Faure, 1967. Origin of salts in Lake Vanda, Wright Valley, southern Victoria Land, Antarctica. Earth and Planetary Science Letters 3: 101–106.

    Google Scholar 

  • Jones, L. M., R. E. Carver, E. R. McSaveney & T. Tickhill, 1971. Sediment analysis of the beaches of Lake Vanda, Wright Valley. Antarct. J. U.S. 6: 199–200.

    Google Scholar 

  • Judd, F. M. & C. H. Hendy, 1986. Glacial sediments in the Marshall Valley. New Zealand Antarctic Record, (abstract) 7: 24–25.

    Google Scholar 

  • Kato, K., T. Torii & N. Nakai, 1979. Dilution and concentration of saline water in Don Juan Pond in 1974. In T. Nagata (ed) Proceedings of the Seminar III on Dry Valley Drilling Project, 1978. Memoirs of the National Institute of Polar Research, Tokyo. Special Issue, No. 13: 53–59.

  • Kellogg, D. E., M. Stuiver, T. B. Kellogg & G. H. Denton, 1979. Non-marine diatoms from late Wisconsin perched deltas in Taylor Valley, Antarctica. Palaeogeogr. Palaeclim. Palaeoecol. 30: 157–189.

    Google Scholar 

  • Keys, J. R., 1980. Air temperature, wind, precipitation and atmosphere humidity in the McMurdo region. Dept. of Geology Pub. No. 17 (Antarctic Data Series No. 9), Victoria University of Wellington, New Zealand, 52 pp.

    Google Scholar 

  • Keys, J. R. & K. Williams, 1981. Origin of crystalline, cold desert salts in the McMurdo region, Antarctica, Geochim. Cosmochim. Acta 45: 2299–2309.

    Google Scholar 

  • Kyle, P.R., 1981. Glacial history of the McMurdo Sound area as indicated by the distribution and nature of McMurdo Volcanic Group rocks. In L. D. McGinnis (ed) Dry Valley Drilling Project. Ant. Res. Series., Amer. Geopys. Union, Wash., D.C. 33: 403–412.

    Google Scholar 

  • Lawrence, M. J. F. & C. H. Hendy, 1989. Carbonate deposition and the Ross Sea ice advance, Fryxell basin, Taylor Valley, Antarctica, N.Z. J. Geol. Geophys. 32: 267–277.

    Google Scholar 

  • Lawrence, M. J. F. & C. H. Hendy, 1985. Water column and sediment characteristics of Lake Fryxell, Taylor Valley, Antarctica, N.Z J. Geol. Geophys. 28: 543–552.

    Google Scholar 

  • Lizotte, M. P. & J. C. Priscu, 1992. Spectral irradiance and bio-optical properties in perennially ice-covered lakes of the dry valleys (McMurdo Sound, Antarctica). Contributions to Antarctic Research III, Ant. Res. Series 57: 1–14.

    Google Scholar 

  • Lopatin, B. G., 1972. Basement complex of the McMurdo ‘Oasis’, south Victoria Land. In R. J. Adie (ed) Antarctic Geology and Geophysics. International Union of Geological Sciences, Series B: 287–292.

  • Love, F. G., G. M. Simmons Jr., B. C. Parker, R. A. Wharton Jr. & K. G. Seaburg, 1983. Modern conophyton-like microbial mats discovered in Lake Vanda, Antarctica. Geomicrobiol. J. 3: 33–48.

    Google Scholar 

  • Love, F. G., G. M. Simmons, Jr., R. A. Wharton, Jr., & B. C. Parker, 1982. Methods for melting dive holes in thick ice and vibracoring beneath ice. J. Sed. Petrol. 52: 644–647.

    Google Scholar 

  • Lyons, W. B., S. W. Tyler, R. W. Wharton & D. M. McKnight, in prep. Recent climatic history of Lakes Fryxell and Hoare: evidence from isotopic data.

  • Lyons, W. B. & P. A. Mayewski, 1993. The geochemical evolution of terrestrial waters in the Antarctic: the role of rock-water interactions. In W. Green & I. Friedmann (eds), Physical and Biogechemical Processes in Antarctic Lakes. Ant. Res. Series. AGU. 59: 135–144.

  • Lyons, W. B., C. J. Bowser, R. A. Wharton Jr. & D. M. McKnight, 1992. Stable isotope geochemistry of Lake Fryxell and Lake Hoare, McMurdo Dry Valleys, Antarctica. EOS (abstract) 73: 161.

    Google Scholar 

  • Lyons, W. B., P. A. Mayewski, P. Donabue & D. Cassidy, 1985. A preliminary study of the sedimentary history of Lake Vanda, Antarctica: climatic implications. N.Z. J. Mar. Freshwat. Res. 19: 253–260.

    Google Scholar 

  • Lyons, W. B., P. A. Mayewski, M. J. Spencer & M. T. Mooney, 1984. New technique for relative age dating using closed-basin lakes in Antarctica. Antarct. J.U.S. 19: 13–16.

    Google Scholar 

  • Matsubaya, O., H. Sakai, T. Torii, H. Burton & K. Kerry, 1979. Antarctic saline lakes - stable isotopic ratios, chemical compositions and evolution. Geochem. Cosmochim. Acta. 43: 7–25.

    Google Scholar 

  • Matsumoto, G. I., 1993. Geochemical features of the McMurdo Dry Valley lakes. In W. Green & I. Friedmann (eds), Physical and Biogechemical Processes in Antarctic Lakes. Ant. Res. Series. AGU. 59: 95–118.

  • Matsumoto, G. I., S. Nakaya, H. Murayama, N. Masuda, T. Kawano, K. Watanuki & T. Torii, 1992. Geochemical characteristics of antarctic lakes and ponds. Proc. NIPR Symp. Polar Biol. 5: 125–145.

    Google Scholar 

  • Mayall, M. J. & V. P. Wright, 1981. Algal tuft structures in stromatolites from the Upper Triassic of Southwest England. Palaeontology 24: 655–660.

    Google Scholar 

  • Mayewski, P. A., W. B. Lyons, G. Zielinski, M. Twickler, S. Whitlow, J. Dibb, P. Grootes, L. Fosberry, C. Wake & K. Welch, in review. An ice-core-based late Holocene history for the Transantarctic Mountains, Antarctica. Ant. Res. Series. AGU.

  • McKay, C. P. & W. L. Davis, 1991. Duration of liquid water habitats on early Mars: Implications for life. Icarus 90: 214–221.

    Google Scholar 

  • Meyer, G. H., M. B. Morrow, O. Wyss, T. E. Berg & L. Littlepage, 1962. Antarctica: The microbiology of an unfrozen saline pond. Science 138: 1103–1104.

    Google Scholar 

  • Mikell, A. T., B. C. Parker & G. M. Simmons Jr., 1984. Response of an antarctic lake heterotrophic community to high dissolved oxygen. Appl. Envir. Microbiol. 47: 1062–1066.

    Google Scholar 

  • Murayama, H., S. Nakaya, S. Murata, T. Torii & K. Watanuki, 1979. Interpretation of salt deposition in Wright Valley, Antarctica: Chemical analysis of DVDP 14 core. In T. Nagata (ed) Proceedings of the Seminar III on Dry Valley Drilling Project, 1978. Memoirs of the National Institute of Polar Research, Tokyo. Special Issue, No. 13: 60–72.

    Google Scholar 

  • Nakai, N., H. Wada, Y. Kiyosu & M. Takimoto, 1975. Stable isotope studies on the origin and geological history of water and salts in the Lake Vanda area, Antarctica. Geochem. J. 9: 7–24.

    Google Scholar 

  • Nakao, K., T. Torii & K. Tanizawa, 1979. Paleohydrology of Lake Vanda in Wright Valley, Antarctica, inferred from Granulometric analysis of DVDP 14 Core. In T. Nagata (ed) Proceedings of the Seminar III on Dry Valley Drilling Project, 1978. Memoirs of the National Institute of Polar Research, Tokyo. Special Issue, No. 13: 73–83.

    Google Scholar 

  • Nakaya, S. Y. Motoori & M. Nishimura, 1979. One aspect of the evolution of saline lakes in the dry valleys of south Victoria Land, Antarctica (extended abstract). In T. Nagata (ed) Proceedings of the Seminar III on Dry Valley Drilling Project, 1978. Memoirs of the National Institute of Polar Research, Tokyo. Special Issue, No. 13: 49–52.

    Google Scholar 

  • Nedell, S. S., D. W. Andersen, S. W. Squyres & F. G. Love, 1987, Sedimentation in ice-covered Lake Hoare, Antarctica. Sedimentology 34: 1093–1106.

    Google Scholar 

  • Nichols, R. L., 1968. Coastal geomorphology, McMurdo Sound, Antarctica. J. Glaciol. 7: 449–478.

    Google Scholar 

  • Olsen, E. A. & W. S. Broecker, 1961. Lamont natural radiocarbon measurements VII. Radiocarbon 3: 141–175.

    Google Scholar 

  • Palmisano, A. C. & G. M. Simmons Jr., 1987. Spectral down-welling irradiance in an antarctic lake. Polar Biol. 7: 145–151.

    Google Scholar 

  • Palmisano, A. C., R. A. Wharton, S. E. Cronin & D. J. Des Marais, 1989. Lipophilic pigments from the benthos of a perennially ice-covered Antarctic Lake. Hydrobiologia 178: 73–80.

    Google Scholar 

  • Parker, B. C. & R. A. Wharton Jr., 1985. Physiological ecology of bluegreen algal mats (modern stromatolites) in antarctic oasis lakes. Arch. Hydrobiol. Alg. Stud. 38/39: 331–348.

    Google Scholar 

  • Parker, B. C., G. M. Simmons Jr., D. D. Cathey & F. T. C. Allnutt, 1982a. Comparative ecology of plankton communities in seven Antarctic oasis lakes. J. Plankton Res. 4: 271–286.

    Google Scholar 

  • Parker, B. C., G. M. Simmons Jr., F. G. Love, R. A. Wharton Jr. & K. G. Seaburg, 1981. Modern stromatolites in the Antarctic dry valley lakes. Bioscience 31: 656–661.

    Google Scholar 

  • Parker, B. C., G. M. Simmons Jr., R. A. Wharton Jr., K. G. Seaburg & F. G. Love, 1982b. Removal of organic and inorganic matter from antarctic lakes by aerial escape of bluegreen algal mats. J. Phycol. 18: 72–78.

    Google Scholar 

  • Péwé, T. L., 1960. Multiple glaciation in the McMurdo Sound region, Antarctica — a progress report. J. Geol. 68: 498–514.

    Google Scholar 

  • Pickard, J. & D. A. Adamson, 1983. Perennially frozen lakes at glacier/rock margins, east Antarctica. In R. L. Oliver, P. R. James & J. B. Jago (eds) 1983. Antarctic Earth Science. Australian Academy of Science, Canbera: 470–472.

    Google Scholar 

  • Priddle, J. & R. B. Heywood, 1980. Evolution of antarctic lake ecosystems. Biol. J. Linn. Soc. 14: 51–66.

    Google Scholar 

  • Ragotzkie, R. A. & G. E. Lens, 1964. The heat balance of two antarctic lakes. Limnol. Oceanogr. 9: 412–425.

    Google Scholar 

  • Riordian, A. J., 1973. The climate of Vanda Station, Antarctica. In G. Weller & S. A. Bowling (eds) Climate of the Arctic: 268–275.

  • Rivard, N. R. & T. L. Péwé, 1962. Origin and distribution of mirabilite, McMurdo Sound region, Antarctica. Geol. Soc. Am., Spec. Pap., No. 68: 119.

  • Scherer, R. P., 1991. Quaternary and Tertiary microfossils from beneath Ice Stream B: Evidence for a dynamic west Antarctic ice sheet history. Palaeogeogr. Palaeoclim. Palaeoecol. 90: 395–412.

    Google Scholar 

  • Scott, R. F., 1905. The Voyage of Discovery. Vol 2, McMillan and Co., London: 214–215.

    Google Scholar 

  • Shirtcliffe, T. G. L., 1964. Lake Bonney, Antarctica: cause of elevated temperatures. J. Geophys. Res. 69: 5257–5268.

    Google Scholar 

  • Simmons, G. M. Jr., J. R. Vestal & R. A. Wharton Jr., 1993. Environmental regulators of microbial activity in continental antarctic lakes. In W. Green & E. I. Friedmann (eds), Physical and Biogechemical Processes in Antarctic Lakes. Ant. Res. Series. AGU. 59: 165–195.

  • Simmons, G. M. Jr., R. A. Wharton Jr., C. P. McKay, S. Nedell & G. Clow, 1986. Sand/ice interactions and sediment deposition in perennially ice-covered antarctic lakes. Antarct. J. U.S. 21: 217–220.

    Google Scholar 

  • Simmons, G. M. Jr., R. A. Wharton Jr., B. C. Parker & D. T. Andersen, 1983. Preliminary observations on chlorophyll-a and ATP concentrations in antarctic and temperate lake sediments. Microb. Ecol. 9: 123–135.

    Google Scholar 

  • Smith, G. I. & I. Friedman, 1993. Lithology and paleoclimatic implications of lacustrine deposits around Lake Vanda and Don Juan Pond, Antarctica. In W. Green & E. I. Friedmann (eds), Physical and Biogechemical Processes in Antarctic Lakes. Ant. Res. Series. AGU. 59: 83–94.

  • Smith, P. M., 1981. The role of the Dry Valley Drilling Project in antarctic and in international science policy. In L. D. McGinnis (ed) Dry Valley Drilling Project. Ant. Res. Series, Amer. Geopys. Union, Wash., D.C. 33: 1–6.

    Google Scholar 

  • Smithson, S. B., P. R. Fikkan, D. J. Murphy & R. S. Houston, 1972. Development of Augengneiss in the ice-free valley area, south Victoria Land. In R. J. Adie (ed) Antarctic Geology and Geophysics. International Union of Geological Sciences, Series B: 293–298.

  • Stuiver, M., G. H. Denton, T. J. Hughes & J. L. Fastook, 1981. History of the marine ice sheet in west Antarctica during the last glaciation, a working hypothesis. In G. H. Denton & T. H. Hughes (eds) The Last Great Ice Sheets. Wiley-Interscience, N.Y.: 319–436.

    Google Scholar 

  • Squyres, S. W., D. W. Andersen, S. S. Nedell & R. A. Wharton Jr., 1991. Lake Hoare, Antarctica: Sedimentation through a thick perennial ice cover. Sedimentology 38: 363–379.

    Google Scholar 

  • Thompson, D. C., R. Craig & A. Bromley, 1971. Climate and surface heat balance in an Antarctic dry valley. N.Z. J. Sci. 14: 245–251.

    Google Scholar 

  • Torii, T. & N. Yamagata, 1981. Limnological studies of saline lakes in the dry valleys. In L. D. McGinnis (ed) Dry Valley Drilling Project. Ant. Res. Series, Amer. Geopys. Union, Wash., D.C. 33: 141–160.

    Google Scholar 

  • Torii, T., N. Yamagata, S. Nakaya & S. Murata, 1979. A view of the formation of saline waters in the dry valleys. In T. Nagata (ed) Proceedings of the Seminar III on Dry Valley Drilling Project, 1978. Memoirs of the National Institute of Polar Research, Tokyo. Special Issue, No. 13: 22–23.

    Google Scholar 

  • Vincent, W. F., 1988. Microbial ecosystems of Antarctica. Cambridge Univ Press, 304 pp.

  • Walter, M. R., 1977. Interpreting stromatolites, Amer. Sci. 65: 563–571.

    Google Scholar 

  • Walter, M. R., J. Bauld & T. D. Brock, 1976. Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park. In M. R. Walter (ed), Stromatolites. Elsevier, Amsterdam: 273–310.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology (2nd ed.). Saunders College, 767 pp.

  • Wetzel, R. G., 1960. Marl encrustation on hydrophytes in several Michigan lakes. Oikos 11: 223–236.

    Google Scholar 

  • Wharton, R. A. Jr., W. B. Lyons & D. J. Des Marais, 1993a. Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered antarctic lake. Chem. Geol. 102: 159–172.

    Google Scholar 

  • Wharton, R. A. Jr., B. C. Parker & G. M. Simmons Jr., 1983. Distribution, species composition, and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22: 355–365.

    Google Scholar 

  • Wharton, R. A. Jr., G. M. Simmons Jr. & C. P. McKay Jr., 1989. Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology, and sedimentation. Hydrobiologia 172: 305–320.

    Google Scholar 

  • Wharton, R. A. Jr., C. P. McKay, G. D. Clow & D. T. Andersen, 1993b. Perennial ice covers and their influence on Antarctic lake ecosystems. In W. Green & E. I. Friedmann (eds), Physical and Biogechemical Processes in Antarctic Lakes. Ant. Res. Series. AGU. 59: 53–72.

  • Wharton, R. A. Jr., C. P. McKay, R. L. Mancinelli & G. M. Simmons Jr., 1987. Perennial N2 supersaturation in an antarctic lake. Nature 325: 343–345.

    Google Scholar 

  • Wharton R. A., C. P. McKay Jr., G. M. Simmons Jr. & B. C. Parker, 1986. Oxygen budget of a perennially ice-covered antarctic lake. Limnol. Oceanogr. 31: 437–443.

    Google Scholar 

  • Wharton, R. A. Jr., B. C. Parker, G. M. Simmons Jr., K. G. Seaburg & F. G. Love, 1982. Biogenio calcite structures forming in Lake Fryxell, Antarctica. Nature 295: 403–405.

    Google Scholar 

  • Wharton, R. A. Jr., C. P. McKay, G. D. Clow, D. T. Andersen, G. M. Simmons Jr. & F. G. Love, 1992. Changes in ice cover thickness and lake level of Lake Hoare, Antarctica: Implications for local climate change. J. Geophys. Res. 97: 3503–3513.

    Google Scholar 

  • Wharton, R. A. Jr., M. A. Meyer, C. P. McKay & R. L. Mancinelli, 1994. Sediment oxygen profiles in a super-oxygenated Antarctic lake. Limnol. Oceanogr. in press.

  • Wilson, A. T., 1981. A review of the geochemistry and lake physics of the Antarctic dry areas. In L. D. McGinnis (ed) Dry Valley Drilling Project. Ant. Res. Series, Amer. Geopys. Union, Wash., D.C. 33: 185–192.

    Google Scholar 

  • Wilson, A. T., 1979. Geochemical problems of the Antarctic dry areas. Nature 280: 205–208.

    Google Scholar 

  • Wilson, A. T., 1964. Evidence from chemical diffusion of a climatic change in the McMurdo dry valleys 1200 years ago. Nature 201: 176–177.

    Google Scholar 

  • Wilson, A. T. & H. W. Wellman, 1962. Lake Vanda as a solar energy trap. Nature 196: 1171–1173.

    Google Scholar 

  • Yusa, Y., 1975. On the water temperature of Lake Vanda, Victoria Land, Antarctica. In T. Torii (ed) Memoirs of National Institute of Polar Research, Tokyo. Special Issue No. 4: 75–89.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doran, P.T., Wharton, R.A. & Lyons, W.B. Paleolimnology of the McMurdo Dry Valleys, Antarctica. J Paleolimnol 10, 85–114 (1994). https://doi.org/10.1007/BF00682507

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682507

Key words

Navigation