Skip to main content
Log in

Dynamical analysis of an elementary X + Y → P reaction in a continuously stirred tank reactor

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This paper investigates the bifurcation behaviour of a model oxidation reaction in a continuously stirred tank reactor (CSTR). We assume that two gaseous chemical species are pumped separately into the CSTR, at constant total pressure, reacting to produce an inert product. The reaction is assumed to be a single step reaction that is described by Arrhenius kinetics. It is capable of producing oscillatory behaviour as well as steady state multiplicity in certain parameter regions. Bifurcation diagrams in various control parameter spaces are presented. We show that the system always possesses a globally attracting invariant region. The equivalence of a CSTR having n feed streams and the one pipe version, by appropriate rescaling, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University Press, New York, 1998).

    Google Scholar 

  2. R.J. Field and M. Burger, Oscillations and Travelling Waves in Chemical Systems (Wiley, New York, 1985).

    Google Scholar 

  3. P. Gray and S.K. Scott, Chemical Oscillations and Instabilities (Clarendon Press, Oxford, 1994).

    Google Scholar 

  4. Ya.B. Zeldovich, I. Zh. Tekh. Fiz. 11 (1941) 493.

    Google Scholar 

  5. C. van Heerden, Ind. Engrg. Chem. 45 (1953) 1242.

    Google Scholar 

  6. O. Bilous and N.R. Amundson, AIChE J. 1 (1955) 513.

    Google Scholar 

  7. R. Aris and N.R. Amundson, Chem. Engrg. Sci. 7 (1958) 121.

    Google Scholar 

  8. R. Aris and N.R. Amundson, Chem. Engrg. Sci. 7 (1958) 132.

    Google Scholar 

  9. R. Aris and N.R. Amundson, Chem. Engrg. Sci. 7 (1958) 148.

    Google Scholar 

  10. V. Hlavacek, M. Kubicek and J. Jelinek, Chem. Engrg. Sci. 25 (1970) 1441.

    Google Scholar 

  11. A. Uppal, W.H. Ray and A.B. Poore, Chem. Engrg. Sci. 29 (1974) 967.

    Google Scholar 

  12. A. Uppal, W.H. Ray and A.B. Poore, Chem. Engrg. Sci. 31 (1976) 205.

    Google Scholar 

  13. V. Balakotaiah and D. Luss, Chem. Engrg. Commun. 13 (1981) 111.

    Google Scholar 

  14. V. Balakotaiah and D. Luss, Chem. Engrg. Commun. 19 (1982) 185.

    Google Scholar 

  15. V. Balakotaiah and D. Luss, Chem. Engrg. Sci. 37 (1982) 433.

    Google Scholar 

  16. V. Balakotaiah and D. Luss, Chem. Engrg. Sci. 37 (1982) 1611.

    Google Scholar 

  17. V. Balakotaiah and D. Luss, Chem. Engrg. Sci. 38 (1983) 1709.

    Google Scholar 

  18. V. Balakotaiah and D. Luss, Chem. Engrg. Sci. 39 (1984) 865.

    Google Scholar 

  19. W.W. Farr and R. Aris, Chem. Engrg. Sci. 41 (1986) 1385.

    Google Scholar 

  20. J.B. Planeaux and K.F. Jensen, Chem. Engrg. Sci. 41 (1986) 1497.

    Google Scholar 

  21. R. Ball and B.F. Gray, Ind. Engrg. Chem. Res. 34 (1998) 3726.

    Google Scholar 

  22. D. Drysdale, Limits of Flammability and Premixed Flames (Wiley, New York, 1999).

    Google Scholar 

  23. D.L. Baulch, J.F. Griffiths, A.J. Pappin and A.F. Sykes, Combust. Flame 73 (1988) 163.

    Google Scholar 

  24. B.R. Johnson, S.K. Scott and A.S. Tomlin, J. Chem. Soc. Faraday Trans. 87 (1991) 2539.

    Google Scholar 

  25. F.A. Williams, Combustion Theory, 2nd ed. (Benjamin, New York, 1985).

    Google Scholar 

  26. M.I. Nelson, H.S. Sidhu, R.O. Weber and G.N. Mercer (under preparation).

  27. H.S. Sidhu, M.J. Sexton, M.I. Nelson, G.N. Mercer and R.O. Weber, in: Proc. Eng. Math. Appl. Conf. (2000) p. 251.

  28. B.R. Johnson, J.F. Griffiths and S.K. Scott, J. Chem. Soc. Faraday Trans. 87 (1991) 523.

    Google Scholar 

  29. B.F. Gray, Merkin, G.C. Wake, Math. Comput. Modelling 15 (1991) 25.

    Google Scholar 

  30. E. Balakrishan, M.I. Nelson and G.C. Wake, Math. Comput. Modelling 30 (1999) 177.

    Google Scholar 

  31. F.P. Di Maio, G. Barbieri and P.G. Lignola, J. Chem. Soc. Faraday Trans. 92 (1996) 2989.

    Google Scholar 

  32. R. Seydel, Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos (Springer-Verlag, New York, 1994).

    Google Scholar 

  33. E.J. Doedel, T.F. Fairgrieve, B. Sandstede, A.R. Champneys, Y.A. Kuznetsov and X. Wang, AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont) (1998).

  34. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer-Verlag, New York, 1998).

    Google Scholar 

  35. B.F. Gray and J.C. Jones, Combust. Flame 57 (1984) 3.

    Google Scholar 

  36. B.F. Gray and L.K. Forbes, Proc. Roy. Soc. London Ser. A 443 (1994) 621.

    Google Scholar 

  37. H.S. Sidhu, L.K. Forbes and B.F. Gray, Proc. Roy. Soc. London Ser. A 449 (1995) 493.

    Google Scholar 

  38. J. Tóth, J. Math. Chem. 25 (1999) 393.

    Google Scholar 

  39. D.P. Copperthwaite, J.F. Griffiths and B.F. Gray, J. Phys. Chem. 95 (1991) 6961.

    Google Scholar 

  40. B.F. Gray and M.J. Roberts, Proc. Roy. Soc. London Ser. A 416 (1988) 361.

    Google Scholar 

  41. D.B. Spalding, Proc. Roy. Soc. London Ser. A 240 (1957) 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidhu, H., Nelson, M., Mercer, G. et al. Dynamical analysis of an elementary X + Y → P reaction in a continuously stirred tank reactor. Journal of Mathematical Chemistry 28, 353–375 (2000). https://doi.org/10.1023/A:1011043005019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011043005019

Navigation