Skip to main content
Log in

Gas phase reactions of alkyl nitrates with hydroxyl radicals under tropospheric conditions in comparison with photolysis

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Rate constants for the reaction of OH radicals with some branched alkyl nitrates have been measured applying a competitive technique. Methyl nitrite photolysis in synthetic air was used as OH radical source at 295±2 K and 1000 mbar total pressure. Using a rate constant of 2.53×10-12 cm3 s-1 for the reaction of OH radicals with n-butane as reference, the following rate constants were obtained (units: 10-12 cm3 s-1): isopropyl nitrate, 0.59±0.22; isobutyl nitrate, 1.63±0.20; 3-methyl-2-butyl nitrate, 1.95±0.15; 2-methyl-1-butyl nitrate, 2.50±0.15; 3-methyl-1-butyl nitrate, 2.55±0.35. These values have been combined with the literature data to recalculate the substituent factors F(X) for the different nitrate groups which can be used to predict OH rate constants for organic nitrates for which experimental data are not available.

Preliminary measurements of the photolysis frequency of isopropyl nitrate have shown that for this nitrate as a model substance, OH reactions and direct photolysis are of equal importance under tropospheric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R., Aschmann, S. M., Carter, W. P. L., Winer, A. M., and Pitts, J. N.Jr., 1982a, Alkyl nitrate formation from the NO x -air photooxidations of C2−C8 alkanes, J. Chem. Phys. 86, 4563–4569.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., Carter, W. P. L., and Winer, A. M., 1982b, Kinetics of the gasphase reactions of OH radicals with alkyl nitrates at 299±2 K, Int. J. Chem. Kinet. 14, 919–926.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., Carter, W. P. L., Winer, A. M., and Pitts, J. N.Jr., 1982c, Kinetics of the reaction of OH radicals with n-alkanes at 299±2 K, Int. J. Chem. Kinet. 14, 781–788.

    Google Scholar 

  • Atkinson, R., Carter, W. P. L., and Winer, A. M., 1983, Effects of temperature and pressure of alkyl nitrate yields in the photooxidations of n-pentane and n-heptane, J. Phys. Chem. 87, 2012–2018.

    Google Scholar 

  • Atkinson, R. and Lloyd, A. C., 1984, Evaluation of kinetic and mechanistic data for modelling of photochemical smog, J. Phys. Chem. Ref. Data 13, 315–444.

    Google Scholar 

  • Atkinson, R., Aschmann, A. M., Carter, W. P. L., Winer, A. M., and Pitts, J. N.Jr., 1984, Formation of alkyl nitrates from the reaction of branched and cyclic peroxy radicals with NO, Int. J. Chem. Kinet. 16, 1085–1101.

    Google Scholar 

  • Atkinson, R., 1986, Kinetics and mechanisms of the gas-phase reactions of the OH radical with organic compounds under atmospheric conditions, Chem. Rev. 86, 69–201.

    Google Scholar 

  • Atkinson, R., Winer, A. M., and Pitts, J. N.Jr., 1986, Estimations of night-time N2O5 concentrations from ambient NO2 and NO3 radical concentrations and the role of N2O5 in night-time chemistry, Atmos. Environ. 20, 331–339.

    Google Scholar 

  • Atkinson, R., 1987, A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds, Int. J. Chem. Kinet. 19, 799–828.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., and Winer, A. M., 1987, Alkyl nitrate formation from the reaction of branched RO2 radicals with NO as a function of temperature and pressure, J. Atmos. Chem. 5, 91–102.

    Google Scholar 

  • Atlas, E., 1988, Evidence for ≥C3 alkyl nitrates in rural and remote atmospheres, Nature 331, 426–428.

    Google Scholar 

  • Becker, K. H., Biehl, H. M., Bruckmann, P., Fink, E. H., Führ, F., Klöpffer, W., Zellner, R., and Zetzsch, C., 1984, Methods of the ecotoxicological evaluation of chemicals, Photochemical degradation in the gas phase, Spezielle Berichte der Kernforschungsanlage Jülich No. 279.

  • Barnes, I., Becker, K. H., Fink, E. H., Reimer, A., Zabel, F., and Niki, H., 1983, Rate constant and products of the reaction of CS2+OH in the presence of O2, Int. J. Chem. Kinet. 15, 631–645.

    Google Scholar 

  • Calvert, J. G. and Pitts, J. N.Jr., 1966, Photochemistry, Wiley, New York, p. 454.

    Google Scholar 

  • Calvert, J. G. and Madronich, S., 1987, Theoretical study of the initial products of the atmospheric oxidation of hydrocarbons, J. Geophys. Res. 92, 2221–2222.

    Google Scholar 

  • Carter, W. P. L. and Atkinson, R., 1985, Atmospheric chemistry of alkanes, J. Atmos. Chem. 3, 377–405.

    Google Scholar 

  • Chatfield, R. B., Gardner, E. P., and Calvert, J. G., 1987, Sources and sinks of acetone in the troposphere: behavior of reactive hydrocarbons and a stable product, J. Geophys. Res. 92, 4208–4216.

    Google Scholar 

  • Csizmadia, V. M., Houlden, S. A., Koves, G. J., Boggs, J. M., and Csizmadia, I. G., 1973, The stereochemistry and ultraviolet spectra of simple nitrate esters, J. Org. Chem. 38, 2281–2287.

    Google Scholar 

  • Darnall, K. R., Carter, W. P. L., Winer, A. M., Lloyd, A. C., and Pitts, J. N.Jr., 1976, Importance of RO2+NO in alkyl nitrate formation from C4−C6 alkane photooxidation under simulated atmospheric conditions, J. Phys. Chem. 80, 1948–1950.

    Google Scholar 

  • Demerjian, K. L., Schere, K. L. and Peterson, J. T., 1980, Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere, Adv. Environ. Sci. Technol. 10, 369.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts, J. N.Jr., 1986, Atmospheric chemistry: Fundamentals and experimental techniques, Wiley, New York, p. 110.

    Google Scholar 

  • Gaffney, J. S. and Levine, S. Z., 1979, Predicting gas-phase organic molecule reaction rates using linear free energy correlations I. O(3P) and OH addition and abstraction reactions, Int. J. Chem. Kinet. 11, 1197–1209.

    Google Scholar 

  • Gaffney, J. S., Fajer, R., Senum, G. I., and Lee, J. H., 1986, Measurement of the reactivity of OH with methyl nitrate: implications for prediction of alkyl-nitrate-OH reaction rates, Int. J. Chem. Kinet. 18, 399–407.

    Google Scholar 

  • Gardner, E. P., Wijayaratne, R. D., and Calvert, J. G., 1984, Primary quantum yields of photodecomposition of acetone in air under tropospheric conditions, J. Phys. Chem. 88, 5069–5076.

    Google Scholar 

  • Gray, J. A. and Style, D. W. G., 1953, The photolysis of ethyl nitrate, Trans. Faraday Soc. 49, 52–57.

    Google Scholar 

  • Jet Propulsion Laboratory (JPL), 1987, Chemical kinetics and photochemical data for use in stratospheric modeling, evaluation number 8, JPL Publ., 87-41, 1–196.

  • Kerr, J. A. and Stocker, D. W., 1986, Kinetics of the reaction of hydroxyl radicals with alkyl nitrates and some oxygen containing organic compounds studied under simulated atmospheric conditions, J. Atmos. Chem. 4, 253–262.

    Google Scholar 

  • Kornblum, N. and Teitelbaum, C., 1952, The basis for the report that rearrangements occur when cyclopentyl iodide and cyclohexyl iodide react with silver nitrate, J. Am. Chem. Soc. 74, 3076–3078.

    Google Scholar 

  • Lee, Y. N., Senum, G. I., and Gaffney, J. S., 1983, Peroxyacetyl nitrate (PAN) stability, solubility, and reactivity implications for tropospheric nitrogen cycles and precipitation chemistry, Fifth Int. Conf. of the Comm. on Atmos. Chem. and Global Poll., Symposium on Tropospheric Chemistry, Oxford, England, August/September 1983, p. 38.

  • Logan, J. L., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • Luke, W. T. and Dickerson, R. R., 1988, Direct measurements of the photolysis rate coefficient of ethyl nitrate, Geophys. Res. Lett. 15, 1181–1184.

    Google Scholar 

  • Peterson, J. T., 1976, Calculated actinic fluxes (290–700 nm) for air pollution photochemistry applications, U.S. Environmental Protection Agency Report No. EPA-600/4-76-025.

  • Perner, D., Platt, U., Trainer, M., Hübler, G., Drummond, J., Junkermann, W., Rudolph, J., Schubert, B., Volz, A., and Ehhalt, D. H., 1987, Measurements of tropospheric OH concentrations: a comparison of field data with model predictions, J. Atmos. Chem. 5, 185–216.

    Google Scholar 

  • Platt, U. F., Perner, D., Schröder, J., Kessler, C., and Toennissen, A., 1981, The diurnal variation of NO3, J. Geophys. Res. 86, 11,965–11,970.

    Google Scholar 

  • Platt, U. F., Winer, A. M., Biermann, H. W., Atkinson, R., and Pitts, J. N.Jr., 1984, Measurement of nitrate radical concentrations in continental air, Environ. Sci. Technol. 18, 365–369.

    Google Scholar 

  • Salter, L. F. and Thrush, A., 1977, Reaction of oxygen atoms with methyl and ethyl nitrate, J. Chem. Soc. Faraday Trans. 1, 73, 1098–1103.

    Google Scholar 

  • Taylor, W. D., Allston, T. D., Moscato, M. J., Fazekus, G. B., Kozlowski, R., and Takacs, G. A., 1980, Atmospheric photodissociation lifetimes for nitro methane, methyl nitrite and methyl nitrate, Int. J. Chem. Kinet. 12, 231–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, K.H., Wirtz, K. Gas phase reactions of alkyl nitrates with hydroxyl radicals under tropospheric conditions in comparison with photolysis. J Atmos Chem 9, 419–433 (1989). https://doi.org/10.1007/BF00114754

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114754

Key words

Navigation