Skip to main content
Log in

Regional studies of potential carbon monoxide sources based on space shuttle and aircraft measurements

  • Influence of Marine and Terrestrial Biosphere on the Chemical Composition of the Atmosphere
  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Carbon monoxide measurements made from the space shuttle show maxima over South America, central Africa, the eastern Mediterranean, and China. The maxima appear to be associated with either concomitant or prior convection in the air masses which carries boundary layer air into the upper troposphere. Previous aircraft measurements of carbon monoxide and ozone over South America are shown to be consistent with this view. In the tropics the three regions of long-term mean rising motion, which form part of the Walker circulation, are associated with elevated carbon monoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chameides, W. L., 1979, Effect of variable energy input on nitrogon fixation in instantaneous linear discharges, Nature, Lond. 277, 123–125.

    Google Scholar 

  • Chameides, W. L., Stedman, D. H., Dickerson, R. R., Rusch, D. W., and Cicerone, R. J., 1977, NO x production in lightning, J. Atmos. Sci. 34, 143–149.

    Google Scholar 

  • Chatfield, R. B. and Crutzen, P. J., 1984, Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors. J. Geophys. Res. 89, 7111–7132.

    Google Scholar 

  • Connors, V. S. and Reichle, H. G., Jr., 1986, The origin of a CO-enriched air mass observed over the eastern Mediterranean Sea, submitted to Tellus.

  • Crutzen, P. J., 1986, The role of the tropics in atmospheric chemistry, in Geophysiology of Amazonia (R., Dickinson, ed.), John Wiley, New York, in press.

    Google Scholar 

  • Crutzen, P. J., Delany, A. C., Greenberg, J., Haagenson, P., Heidt, L., Leub, R., Pollock, W., Seiler, W., Wartburg, A., and Zimmerman, P., 1985, Tropospheric chemical composition measurements in Brazil during the dry season, J. Atmos. Chem. 2, 233–256.

    Google Scholar 

  • Crutzen, P. J. and Gidel, L. T., 1983, A two-dimensional photochemical model of the atmosphere, 2, The tropospheric budgets of the anthropogenic chlorocarbons CO, CH4, CH3Cl and the effects of various NO x sources on tropospheric ozone, J. Geophys. Res. 88, 6641–6661.

    Google Scholar 

  • Danielsen, E. F., 1961, Trajectories: isobaric, isentropic and actual, J. Meteorol. 18, 479–486.

    Google Scholar 

  • Danielsen, E. F., 1974, Review of trajectory methods, Adv. Geophys. 18B, 73–94.

    Google Scholar 

  • Dawson, G. A., 1980, Nitrogen fixation by lightning, J. Atmos. Sci. 37, 174–178.

    Google Scholar 

  • Dean, G. A., 1971, The three-dimensional wind structure over South America and associated rainfall over Brazil, Rept. No. 71-4, Dept. of Meteorology, Florida State University, 33 pp. and maps.

  • Delany, A. C., Haagensen, P., Walters, S., Wartburg, A. F., and Crutzen, P. J., 1985, Photochemically produced ozone in the emission from large-scale tropical vegetation, J. Geophys. Res. 90, 2425–2429.

    Google Scholar 

  • Deutscher Wetterdienst, 1982, Die Witterung in Ubersee, World Weather Survey November 1981, Deutscher Wetterdienst, See Wetteramt. Hamburg.

  • Dey, 1985, private communication.

  • Dickerson, R. R., Huffman, G. J., Luke, W. T., Nunnermacker, L. J., Pickering, K. E., Leslie, A. C. D., Lindsey, C. G., Slinn, W. G. N., Kelly, T. J., Daumn, P. H., Delany, A. C., Greenberg, J. P., Zimmerman, P. R., Boatman, J. F., Ray, J. D., and Stedman, D. H., 1987, Thunderstorms: an important mechanism in the transport of air pollutants, Science 235, 460–465.

    Google Scholar 

  • Doherty, G. M., Newell, R. E., and Reichle, H. G.Jr., 1986, Analysis of remote measurements of tropospheric carbon monoxide concentrations made during the 1979 Summer Monsoon Experiment (MONEX), J. Geophys. Res. 91, 9827–9839.

    Google Scholar 

  • Dudzinski, T. J., 1979, Carbon monoxide measurement in the Global Atmospheric Sampling Program, NASA TP 1526, NASA, Washington, D., 20546, 23 pp.

    Google Scholar 

  • Falconer, P. D. and Pratt, R. W., 1980, Comments on ‘Experimental evidence for interhemispheric transport from airborne carbon monoxide measurements’, J. Appl. Meteorol. 19, 338–339.

    Google Scholar 

  • Fishman, J., Solomon, S., and Crutzen, P. J., 1979, Observational and theoretical evidence in support of a significant in situ photochemical source of tropospheric ozone, Tellus 31, 432–446.

    Google Scholar 

  • Fishman, J. and Seiler, W., 1983, Correlative nature of ozone and carbon monoxide in the troposphere: implications for the tropospheric ozone budget, J. Geophys. Res. 88, 3662–3670.

    Google Scholar 

  • Gabrielyan, A. G., Grechko, E. I., Dzhola, A. V., Dianov-Klokov, V. I., and Yurganov, L. N., 1984, Spatial distribution of the CO background in the atmosphere in the Northern and Southern Hemispheres, Izvest. Atmos. Ocean Phys. 20, 962–966.

    Google Scholar 

  • Gidel, L. T., 1983, Cumulus cloud transport of transient tracers, J. Geophys. Res. 88, 6587–6599.

    Google Scholar 

  • Greenberg, J. P., Zimmerman, P. R., Heidt, L., and Pollock, W., 1984, Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil, J. Geophys. Res. 89, 1350–1354.

    Google Scholar 

  • Gregory, G. L., Beck, S. M., and Williams, J. A., 1984, Measurements of free tropospheric ozone: an aircraft survey from 44°N to 46°S latitude, J. Geophys. Res. 89, 9642–9648.

    Google Scholar 

  • Hill, R. D., Rinker, R. G., and Wilson, H. D., 1980, Atmospheric nitrogen fixation by lightning, J. Atmos. Sci. 37, 179–192.

    Google Scholar 

  • Hoffman, R. H., 1981, A computer program which calculates radiative fluxes and heating rates in model atmospheres, Sci. Rept. No. 4 to U.S. Dept. of Energy COO-2195–37, Dept. of Meteor. and Phys. Ocean., M.I.T. Cambridge, Mass., 124 pp.

    Google Scholar 

  • Kirchhoff, V. W. J. H., Hilsenrath, E., Motta, A. G., Sahai, Y., and Medrano-B., R. A., 1983, Equatorial ozone characteristics as measured at Natal (5.9° S, 35.2° W), J. Geophys. Res. 88, 6812–6818.

    Google Scholar 

  • Kirichenko, L. V., 1970, Radon exhalation from vast areas according to vertical distribution of its short-lived decay products, J. Geophys. Res. 75, 3639–3649.

    Google Scholar 

  • Kistler, R. E. and Parrish, D. F., 1982, Evolution of the NMC Data assimilation system: Sept. 1978–Jan. 1982, Monthly Weather Rev. 110, 1335–1346.

    Google Scholar 

  • Levine, J. S., Hughes, R. E., Chameides, W. L., and Howell, W. E., 1979, N2O and CO production by electric discharge: atmospheric implications, Geophys. Res. Lett. 6, 557–559.

    Google Scholar 

  • Levine, J. S., Rogowski, R. S., Gregory, G. L., Howell, W. E., and Fishman, J., 1981, Simultaneous measurements of NO x , NO, and O3 production in a laboratory discharge: atmospheric implications, Geophys. Res. Lett. 8, 357–360.

    Google Scholar 

  • Levine, J. S., Augustsson, T. R., Anderson, I. C., and Hoell, J. M.Jr., 1984, Tropospheric sources of NO x : lightning and biology, Atmos. Environ. 18, 1797–1804.

    Google Scholar 

  • Liu, S. C., McFarland, M., Kley, D., Zafiriou, O., and Huebert, B., 1983, Tropospheric NO x and O3 budgets in the equatorial Pacific, J. Geophys. Res. 88, 1360–1368.

    Google Scholar 

  • Logan, J. A. and Kirchhoff, V. W. J. H., 1986, Seasonal variations of tropospheric ozone at Natal, Brazil, J. Geophys. Res. 91, 7875–7882.

    Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: a global perspective, J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • Matthews, E., 1985, Atlas of archived vegetation, land-use and seasonal albedo data sets, NASA Technical Memorandum 86199, NASA, Goddard Space Flight Center, Institute for Space Studies, New York, NY 10025, 53 pp.

    Google Scholar 

  • Marenco, A. and Delaunay, J. C., 1980, Experimental evidence of natural sources of CO from measurements in the troposphere, J. Geophys. Res. 85, 5599–5613.

    Google Scholar 

  • Minnis, P. and Harrison, E. F., 1984. Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data, Part III: November 1978 radiative parameters derived from GOES data. J. Clim. Appl. Met. 23, 1032–1057.

    Google Scholar 

  • Molion, 1984, private communication.

  • Newell, R. E., 1979, Climate and the ocean, American Scientist, 67, 405–416.

    Google Scholar 

  • Newell, R. E., Boer, G. J., and Kidson, J. W., 1974, An estimate of the interhemispheric transfer of carbon monoxide from tropical general circulation data, Tellus 26, 103–107.

    Google Scholar 

  • Newell, R. E. and Gauntner, D. J., 1979, Experimental evidence for interhemispheric transport from airborne carbon monoxide measurements. J. Appl. Meteorol. 19, 696–699.

    Google Scholar 

  • Newell, R. E. and Gauntner, D. J., 1980, Reply to Falconer and Pratt, J. Appl. Meteorol. 19, 339–340.

    Google Scholar 

  • Newell, R. E., Condon, E. P., and Reichle, H. G.Jr., 1981, Measurements of CO and CH4 in the troposphere over Saudi Arabia, India, and the Arabian Sea during the 1979 International Summer Monsoon Experiment (MONEX). J. Geophys. Res. 86, 9833–9838.

    Google Scholar 

  • Newell, R. E. and Wu, M.-F., 1985, Simultaneous measurements of carbon monoxide and ozone in the NASA Global Atmospherie Sampling Program (GASP), in Atmospheric Ozone (C. S., Zerefos and A., Ghazi, eds.), D. Reidel, Dordrecht, Boston, Lancaster, pp. 548–552.

    Google Scholar 

  • Papathakos, L. C. and Briehl, D., 1981, NASA Global Atmospheric Sampling Program (GASP) data report for tapes VL0015-VL0020, NASA Technical Memorandum 81661, NASA, Washington, DC 20546, 94 pp.

    Google Scholar 

  • Pasquill, F. and Smith, F. B., 1983, Atmospheric Diffusion, 3rd Ed., Ellis Horwood, Chichester, England, pp. 437.

    Google Scholar 

  • Peixoto, J. P. and Oort, A. H., 1983, The atmospheric branch of the hydrological cycle and climate, in Variations in the Global Water Budget (A., Street-Perrott et al., eds.), D. Reidel, Dordrecht, 5–65.

    Google Scholar 

  • Rasmussen, R. A. and Khalil, M. A. K., 1981, Differences in the concentration of atmospheric trace gases in and above the tropical boundary layers, PAGEOPH 119, 990–997.

    Google Scholar 

  • Rasmusson, E. M., 1972, Seasonal variation of tropical humidity parameters, Chapter 5, in The General Circulation of the Tropical Atmosphere (R. E. Newell, J. W. Kidson, D. G. Vincent, and G. J. Boer, MIT Press, Cambridge, Mass. pp. 193–237.

    Google Scholar 

  • Reichle, H. G.Jr., Connors, V. S., Holland, J. A., Hypes, W. D., Wallio, H. A., Casas, J. C., Gormsen, B. B., Saylor, M. S., and Hesketh, W. D., 1986, Middle and upper tropospheric carbon monoxide mixing ratios as measured by a satellite-borne remote sensor during November 1981, J. Geophys. Res. 91, 10,865–10,887.

    Google Scholar 

  • Sadler, J. C., 1975, The upper tropospheric circulation over the global tropics, UHMET-75-05; University of Hawaii, 35 pp.

  • Seiler, W., 1974, The cycle of atmospheric CO, Tellus 26, 117–135.

    Google Scholar 

  • Seiler, W. and Crutzen, P. J., 1980, Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Climatic Change, 2, 207–247.

    Google Scholar 

  • Seiler, W. and Fishman, J., 1981, The distribution of carbon monoxide and ozone in the free troposphere, J. Geophys. Res. 86, 7255–7266.

    Google Scholar 

  • Seiler, W., Hiehl, H., Brunke, E.-G., and Halliday, E., 1984, The seasonality of CO abundance in the Southern Hemisphere, Tellus 36B, 219–231.

    Google Scholar 

  • Smith, F. B., 1957, Convective-diffusion processes below a stable layer, Meteor. Res. Comm. London, M. R. P., No. 1048, 16 pp., Available in the library of the United Kingdom Meteorological Office.

  • Tiefermann, M. W., 1979, Ozone measurement system for NASA Global Atmospheric Sampling Program, NASA TP-1451, NASA, Washington, DC 20546, 19 pp.

    Google Scholar 

  • Zimmermann, P. H., Chatfield, R. B., Fishman, J., Crutzen, P. J., and Hanst, P. L., 1978, Estimates on the production of CO and H2 from the oxidation of hydrocarbon emission from vegetation, Geophys. Res. Lett. 5, 679–682.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newell, R.E., Shipley, S.T., Connors, V.S. et al. Regional studies of potential carbon monoxide sources based on space shuttle and aircraft measurements. J Atmos Chem 6, 61–81 (1988). https://doi.org/10.1007/BF00048332

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048332

Key words

Navigation