Skip to main content
Log in

The Role of In Situ Photochemistry in the Control of Ozone during Spring at the Jungfraujoch (3,580 m asl) – Comparison of Model Results with Measurements

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A photochemical box model has been used to model themeasured diurnal ozone cycle in spring at Jungfraujochin the Swiss Alps. The comparison of the modelleddiurnal ozone cycle with the mean measured diurnalozone cycle in spring, over the period 1988–1996,shows a good agreement both with regard to the shapeand amplitude. Ozone concentrations increase duringthe daytime and reach a maximum at about 16:00–17:00(GMT) in both the modelled and the mean observed ozonecycle, indicative of net ozone production during thedaytime at Jungfraujoch in spring. The agreement isbetter when the modelled ozone cycle is compared withthe mean measured diurnal cycle (1988–1996) filteredfor north-westerly winds >5 m/s (representative ofregional background conditions at Jungfraujoch). Inaddition to ozone, the modelled diurnal cycle of[HO2] + [CH3O2] also shows rather goodagreement with the mean diurnal cycle of the peroxyradicals measured during FREETEX '96, a FREETropopsheric Experiment at Jungfraujoch in April/May1996. Furthermore, this mean diurnal cycle of the sumof the peroxy radicals measured during FREETEX '96 isused to calculate, using steady-state expressions, therespective diurnal cycle of the OH radical. Thecomparison of the OH diurnal cycle, calculated fromthe peroxy radical measurements during FREETEX '96,with the modelled one, reveals also good agreement.The net ozone production rate during the day-time is0.27 ppbv h-1 from the model, and 0.13 ppbvh-1 from the observations during FREETEX '96. Theobservations and model results both suggest that thediurnal ozone variation in spring at Jungfraujoch isprimarily of photochemical origin. Furthermore, theobserved and modelled positive net ozone productionrates imply that tropospheric in situphotochemistry contributes significantly to theobserved high spring ozone values in the observedbroad spring-summer ozone maximum at Jungfraujoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashbourn, S. F. M., Jenkin, M. E., and Clemitshaw, K. C., 1998: Laboratory studies of the response of a peroxy radical chemical amplifier to HO2 and a series of organic peroxy radicals, J. Atmos. Chem. 29, 233–266.

    Google Scholar 

  • Ayers, G. P., Penkett, S. A., Gillet, R. W., Bandy, B., Galbally, I. E., Meyer, C. P., Elsworth, C. M., Bentley, S. T., and Forgan, B. W., 1992: Evidence for photochemical control of ozone concentrations in unpolluted marine air, Nature 360, 446–449.

    Google Scholar 

  • Ayers, G. P., Granek, H., and Boers, R., 1997: Ozone in the marine boundary layer at Cape Grim: model simulation, J. Atmos. Chem. 27, 179–195.

    Google Scholar 

  • Baltensperger, U., Gäggeler, H. W., Jost, D. T., Lugauer, M., Schwikowski, M., Seibert, P., 1997: Aerosol climatology at a high Alpine site Jungfraujoch, Switzerland, J. Geophys. Res. 102 (D16), 19,707–19,715.

    Google Scholar 

  • Beine, H. J., Jaffe, D. A., Herring, J. A., Kelley, J. A., Krognes, T., and Stordal, F., 1997: Highlatitude springtime photochemistry. Part I: NOx, Pan and ozone relationships, J. Atmos. Chem. 27, 127–153.

    Google Scholar 

  • Cantrell, C. A. and Stedman, D. H., 1982: A possible technique for the measurement of atmospheric peroxy radicals, J. Geophys. Res. 9 (8), 846–849.

    Google Scholar 

  • Cantrell, C. A., Shetter, R. E., Gilpin, T. M., Calvert, J. G., Eisele, F. L., and Tanner, D. J., 1996: Peroxy radical concentrations measured and calculated from trace gas measurements in the Mauna Loa Observatory Photochemistry Experiment 2, J. Geophys. Res. 101 (D9), 14,653–14,664.

    Google Scholar 

  • Carpenter, L. J., Monks, P. S., Bandy, B. J., Penkett, S. A., Galbally, I. E., and Meyer, C. P., 1997: A study of peroxy radicals and ozone photochemistry at coastal sites in the northern and southern hemisphere, J. Geophys. Res. 102 (D21), 25,417–25,427.

    Google Scholar 

  • Clemitshaw, K. C., Carpenter, L. J., Penkett, S. A., and Jenkin, M. E., 1997: A calibrated peroxy radical chemical amplifier (PERCA) instrument for ground-based tropospheric measurements, J. Geophys. Res. 102 (D21), 25,405–25,416.

    Google Scholar 

  • Chameides, W. and Walker, J. C. G., 1973: A photochemical theory of tropospheric ozone, J. Geophys. Res. 78 (36), 8751–8760.

    Google Scholar 

  • Chameides, W. L., Davis, D. D., Bradshaw, J., Sandholm, S., Rodgers, M., Baum, B., Ridley, B., Madronich, S., Carroll, M. A., Gregory, G., Schiff, H. I., Hastie, D. R., Torres, A., and Condon, E., 1990: Observed and model-calculated NO2/NO rations in tropospheric air sampled during the NASA GTE/CITE-2 field study, J. Geophys. Res. 95 (D7), 10,235–10,247.

    Google Scholar 

  • Crawford, J., Davis, D., Chen, G., Bradshaw, J., Sandholm, S., Gregory, G., Sachse, G., Anderson, B., Collins, J., Blake, D., Singh, H., Heikes, B., Talbot, R., and Rodriguez, J., 1996: Photostationary state analysis of the NO2-NO system based on airborne observations from the western and central North Pacific, J. Geophys. Res. 101 (D1), 2,053–2,072.

    Google Scholar 

  • Crutzen, P. J., 1988: Tropospheric ozone: an overview, in I. S. A. Isaksen (ed.), Tropospheric Ozone, D. Reidel Publ. Co., pp. 3–32.

  • Curtis, A. R. and Sweetenham, W. P., 1987: FACSIMILE/CHEKMAT Users Manual, AERER12805, London, HMSO.

    Google Scholar 

  • Davies, T. D. and Schuepbach, E., 1994: Episodes of high ozone concentrations at the earth's surface resulting from transport down from the upper troposphere/lower stratosphere: a review and case studies, Atmos. Environ. 28 (1), 53–68.

    Google Scholar 

  • Davis, D. D., Chen, G., Chameides, W., Bradshaw, J., Sandholm, S., Rodgers, M., Schendal, J., Madronich, S., Sachse, G., Gregory, G., Anderson, B., Barrick, J., Shipham, M., Collins, J., Wade, L., and Blake, D., 1993: A photostationary state analysis of the NO2-NO system based on airborne observations from the subtropical/tropical North and South Atlantic, J. Geophys. Res. 98, 23,501–23,523.

    Google Scholar 

  • Davis, D. D., Crawford, J., Chen, G., Chameides, W., Liu, S., Bradshaw, J., Sandholm, S., Sachse, G., Gregory, G., Anderson, B., Barrick, J., Bachmeier, A., Collins, J., Browell, E., Blake, D., Rowland, S., Kondo, Y., Singh, H., Talbot, R., Heikes, B., Merrill, J., Rodriguez, J., and Newell, R. E., 1996: Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991, J. Geophys. Res. 101 (D1), 2111–2134.

    Google Scholar 

  • De More, W. B., Sander, S. P., Howard, C. J., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Hampson, R. F., Kurylo, M. J., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, evaluation number 12, National Aeronautics and Space Administration, Jet Propulsion Laboratory, JPL Publication 97–4.

  • Eisele, F. L., Tranner, D. J., Cantrell, C. A., and Calvert, J. G., 1996: Measurements and steady state calculations of OH concentrations at Mauna Loa Observatory, J. Geophys. Res. 101 (D9), 14,665–14,679.

    Google Scholar 

  • EMPA, 1994: Technischer Bericht zum Nationalen Beobachtungsnetz für Luftfremdstoffe (NABEL), p. 116.

  • Fabian, P., 1974: Comments on ‘A photochemical theory of tropospheric ozone’ by W. Chameides and J. C. G. Walker, J. Geophys. Res. 79, 4124–4125.

    Google Scholar 

  • Follows, M. J. and Austin, J. F., 1992: A zonal average model of the stratospheric contributions to the tropospheric ozone budget, J. Geophys. Res. 97 (D16), 18,047–18,060.

    Google Scholar 

  • Herring, J. A., Jaffe, D. A., Beine, H. J., Madronich, S., and Blake, D. R., 1997: High-latitude springtime photochemistry. Part II: sensitivity studies of ozone production, J. Atmos. Chem. 27, 155–178.

    Google Scholar 

  • Hough, A. M., 1988: The calculation of photolysis rates for use in global tropospheric modelling studies, United Kingdom Atomic Energy Authority HARWELL, AERE R-13259, Harwell Laboratory, Oxfordshire.

    Google Scholar 

  • Jaffe, D. A., Honrath, R. E., Zhang, L., Akimoto, H., Shimizu, A., Mukai, H., Murano, K., Hatakeyama, S., and Merrill, J., 1996: Measurements of NO, NOy, CO and O3 and estimation of the ozone production rate at Oki island, Japan, during PEM-West, J. Geophys. Res. 101 (D1), 2037–2048.

    Google Scholar 

  • Junge, C. E., 1962: Global ozone budget and exchange between stratosphere and troposphere, Tellus 14, 363–377.

    Google Scholar 

  • Junkermann, W., Platt, U., and Volz-Thomas, A., 1989: A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric atmospheric molecules, J. Atmos. Chem. 8, 203–227.

    Google Scholar 

  • Kleinman, L. I., Lee, Y. N., Stephen, S. R., Springston, R., Lee, J. H., Nunnermacker, L., Weinstein-Loyd, J., and Zhou, X., 1995: Peroxy radical concentration and ozone formation rate at a rural site in the southeastern, United States, J. Geophys. Res. 100 (D4), 7263–7273.

    Google Scholar 

  • Kondo, Y., Ziereis, H., Koike, M., Kawakami, S., Gregory, G. L., Sachse, G. W., Singh, J. B., Davis, D. D., and Merrill, J. T., 1996: Reactive nitrogen over the Pacific Ocean during PEM-West A, J. Geophys. Res. 101 (D1), 1,809–1,828.

    Google Scholar 

  • Liu, S. C., Trainer, M., Fehsenfeld, F. C., Parrish, D. D., Williams, E. J., Fahey, D.W., Hübler, G., and Murphy, P. C., 1987: Ozone production in the rural troposphere and the implications for regional and global ozone distributions, J. Geophys. Res. 92 (D4), 4,191–4,207.

    Google Scholar 

  • Logan, J. A., 1985: Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence, J. Geophys. Res. 90 (D6), 10,463–10,482.

    Google Scholar 

  • Lugauer, M., Baltennsperger, U., Furger, M., Gäggeler, H. W., Jost, D. T., Schwikowski, M., and Wanner, H., 1997: Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl), Tellus 50B, 76–92.

    Google Scholar 

  • Mihele, C. M. and Hastie, D. R., 1998: The sensitivity of radical amplifier to ambient water vapour, Geophys. Res. Lett. 25 (11), 1911–1913.

    Google Scholar 

  • Monks, P. S., Carpenter, L. J., Penkett, S. A., and Ayers, G. P., 1996: Night-time peroxy radical chemistry in the remote marine boundary layer over the Southern ocean, Geophys. Res. Lett. 23 (5), 535–538.

    Google Scholar 

  • Monks, P. S., Carpenter, L. J., Penkett, S. A., Ayers, G. P., Gillett, R. W., Galbally, I. E., and Meyer, C. P., 1998: Fundamental ozone photochemistry in the remote marine boundary layer: the SOAPEX experiment, measurement and theory, Atmos. Environ. 32, 3647–3664.

    Google Scholar 

  • Mount, G. H. and Williams, E. J., 1997: An overview of the tropospheric OH Photochemistry Experiment, Fritz Peak/Idaho Hill, Colorado, fall 1993, J. Geophys. Res. 102 (D5), 6,171–6,186.

    Google Scholar 

  • Oltmans, S. J., 1981: Surface ozone measurements in clean air, J. Geophys. Res. 86 (C2), 1,174–1,180.

    Google Scholar 

  • Penkett, S. A. and Brice, K. A., 1986: The spring maximum in photo-oxidant in the Northern hemisphere troposphere, Nature 319, 655–657.

    Google Scholar 

  • Penkett, S. A., 1988: Indications and causes of ozone increase in the troposphere, in F. S. Rowland and I. S. A. Isaksen (eds), The Changing Atmosphere, Wiley, p. 91.

  • Penkett, S. A., Monks, P. S., Carpenter, L. J., Clemitshaw, K. C., Ayers, G. P., Gillet, R.W., Galbally, I. E., and Meyer, C. P., 1997: Relationships between ozone photolysis rates and peroxy radical concentrations in clean marine air over the southern ocean, J. Geophys. Res. 102 (D11), 12,805–12,817.

    Google Scholar 

  • Penkett, S. A., Clemitshaw, K. C., Savage, N. H., Burgess, R. A., Cardenas, L. M., Carpenter, L. J., McFadyen, G. G., and Cape, J. N., 1999: Studies of oxidant production at the Weybourne Atmospheric Observatory in summer and winter conditions, J. Atmos. Chem. 33, 111–128.

    Google Scholar 

  • Ridley, B. A., Madronich, S., Chatfield, R. B., Walega, J. G., Shetter, R. E., Carroll, M. A., and Montzka, D. D., 1992: Measurements and model simulations of the photostationary state during the Mauna Loa observatory photochemistry experiment: implications for radical concentrations and ozone production and loss rates, J. Geophys. Res. 97 (D10), 10375–10388.

    Google Scholar 

  • Roelofs, G. J. and Lelieveld, J., 1997: Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levels, Tellus 49B, 38–55.

    Google Scholar 

  • Schuepbach, E., Zanis, P., Monks, P. S., and Penkett, S. A., 1996: In situ photochemical control and long-range transport of free tropospheric ozone at Jungfraujoch in the Swiss Alps, Report to the Federal Office of Environment, Forest and Landscape (BUWAL), Switzerland on project No. 204.3/FP3052.

  • Schuepbach, E., Zanis, P., Penkett, S. A., Monks, P. S., and Buchmann, B., 1999: The long-term (1986–1996) ozone record at the alpine site at Jungfraujoch (46º32'/07º59'/3,580 m asl) in Switzerland: homogeneity analysis, trend studies and in situ photochemistry, Invited contribution from subproject TOR-2, in P. M. Borell and P. Borel (eds), Proceedings of EUROTRAC Symposium '98, Garmisch-Partenkirchen, WIT Press, Southampton, pp. 214–220.

    Google Scholar 

  • Sillman, S., Logan, J. A., and Wofsy, S. C., 1990: The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes, J. Geophys. Res. 95 (D2), 1837–1851.

    Google Scholar 

  • Singh, H. B., Ludwig, F. L., and Johnson, W. B., 1978: Tropospheric ozone: concentrations and variabilities in clean remote atmospheres, Atmos. Environ. 12, 2,185–2,196.

    Google Scholar 

  • Wayne, R. P., 1991: Chemistry of Atmospheres, Oxford University Press, 2nd edn, pp. 22–23.

  • Zanis, P., Schuepbach, E., Scheel, H. E., Baudenbacher, M., and Buchmann, B., 1999a: Inhomogeneities and trends in the surface ozone record (1988–1996) at Jungfraujoch in the Swiss Alps, Atmos. Environ. 33, 3777–3786.

    Google Scholar 

  • Zanis, P., Monks, P. S., Schuepbach, E., and Penkett, S. A., 1999b: On the relationship of HO2 + RO2 with j(O1D) during FREETEX '96 at the Jungfraujoch Observatory (3,580 m asl) in the Swiss Alps, J. Geophys. Res. 104 (D21), 26,913–26,926.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanis, P., Monks, P.S., Schuepbach, E. et al. The Role of In Situ Photochemistry in the Control of Ozone during Spring at the Jungfraujoch (3,580 m asl) – Comparison of Model Results with Measurements. Journal of Atmospheric Chemistry 37, 1–27 (2000). https://doi.org/10.1023/A:1006349926926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006349926926

Navigation