Skip to main content
Log in

Ab initio study on carbon Kinetic Isotope Effect (KIE) in the reaction of CH4+Cl•

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Recent studies suggest that the destruction of methane by Cl• in the marine boundary layer could be accounted for as another major sink besides the methane destruction by OH•. High level ab initio molecular orbital calculations have been carried out to study the CH4+Cl• reaction, the carbon Kinetic Isotope Effect (KIE) is calculated using Conventional Transition-State Theory (CTST) plus Wigner and Eckart semiclassical tunneling corrections. The calculated KIE is around 1.026 at 300 K and has a small temperature variation. This is by far the largest KIE among different processes involving atmospheric methane destruction (e.g., OH•, soil). A calculated mass balance of atmospheric methane including the KIE for the CH4+Cl• reaction is found to favor those methane budgets with enhanced biological methane sources, which have relatively lighter carbon isotope composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cantrell, C. A., Shetter, R. E., McDaniel, A. H., Calvert, J. G., Davidson, J. A., Tyler, S. C., Greenberg, J. P., and Lowe, D. C., 1990, Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical, J. Geophys. Res. 95, 22455–22462.

    Google Scholar 

  • Cicerone, R. J. and Oremland, R. S., 1988, Biogeochemical aspects of atmospheric methane, Global Biogeochemical Cycles 2, 299–327.

    Google Scholar 

  • Coleman, D. D., Risatti, J. B., and Shoell, M., 1981, Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria, Geochim. Cosmochim. Acta 45, 1033–1037.

    Google Scholar 

  • Craig, H., Chou, C. C., Welhan, J. A., Stevens, C. M., and Engelkemeir, A., 1988, The isotopic composition of methane in polar ice cores, Science 242, 1535–1539.

    Google Scholar 

  • Crutzen, P. J., 1991, Methane's sinks and sources, Nature 350, 380–381.

    Google Scholar 

  • DeMore, W. B., Sanders, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1992, Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publ. 92-10, NASA.

  • Frisch, M. J., Head-Gordon, M., Foresman, J. B., Trucks, G. W., Raghavachari, K., Schlegel, H. B., Robb, M. A., Binkley, J. S., Gonzalez, C., Defrees, D. J., Fox, D. J., Whiteside, R. A., Seeger, R., Melius, C. F., Baker, J., Kahn, L. R., Stewart, J. J. P., Fluder, E. M., Topiol, S., and Pople, J. A., 1990, Gausian 90, Gaussian, Inc., Pittsburg, PA 15213.

    Google Scholar 

  • Frisch, M. J., Pople, J. A., and Binkley, J. S., 1984, Self-consistent molecular orbital methods 25, Supplementary functions for Gaussian basis sets, J. Chem. Phys. 80, 3265–3269.

    Google Scholar 

  • Frisch, M. J., Trucks, G. W., Head-Gordon, M., Gill, P. M. W., Wong, M. W., Foresman, J. B., Johnson, B. G., Schlegel, H. B., Robb, M. A., Replogle, E. S., Gomperts, R., Andres, J. L., Raghavachari, K., Binkley, J. S., Gonzalez, C., Martin, R. L., Fox, D. J., Defrees, D. J., Baker, J., Stewart, J. J. P., and Peopo, J. A., 1992, Gaussian 92, Gaussian, Inc., Pittsburgh, PA 15213.

    Google Scholar 

  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., and Fraser, P. J., 1991, Three-dimensional model synthesis of the global methane, J. Geophys. Res. 96 (D7), 13033–13065.

    Google Scholar 

  • Gonzalez, C., McDouall, J. J. W., and Schlegel, H. B. 1990, Ab initio study of the reaction between methane and OH, H, and 3O, J. Phys. Chem. 94, 9467–7471.

    Google Scholar 

  • Hehre, W. J., Radom, L., Schleyer, P. R., and Pople, J. A., 1986, Ab initio Molecular Orbital Theory, Wiley, New York.

    Google Scholar 

  • Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), 1990, Climate Change: The IPCC Scientific Assessment, Cambridge Press, Cambridge, 337 pp.

    Google Scholar 

  • JANAF Thermochemical Tables, 3rd edn., ed. by Chase, M. W. Jr., Davies, C. A., Downey, J. R. Jr., Frurip, D. J., and McDonald, R. A. (Natl. Stand. Ref. Data Ser. Natl. Bur. Stand., 1985), Vol. 14.

  • Johnston, H. S., 1966, Gas Phase Reaction Rate Theory, Ronald Press, New York.

    Google Scholar 

  • King, S. L., Quay, P. D., and Lansdown, J. M., 1989, The 13C/12C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations, J. Geophys. Res. 94 (D15), 18273–18277.

    Google Scholar 

  • Kreevoy, M. M. and Truhlar, D. G., 1986, Transition state theory, in investigation of rates and mechanisms of reactions, in C. F. Bernasconi (ed.), Techniques of Chemistry, Vol. VI, Wiley-Interscience, New York.

    Google Scholar 

  • Lasaga, A. C. and Gibbs, G. V., 1991, Ab initio studies of the kinetic isotope effect of the CH4+OH• atmospheric reaction, Geophys. Res. Lett. 18, 1217–1220.

    Google Scholar 

  • Melissas, V. S. and Truhlar, D. G., 1993a, Interpolated variational transition state theory and tunneling calculations of the rate constant of the reaction OH+CH4 at 223–2400 K, J. Chem. Phys. 99 (2), 1013–1027.

    Google Scholar 

  • Melissas, V. S. and Truhlar, D. G., 1993b, Deuterium and carbon-13 kinetic isotope effects for the reaction of OH with CH4, J. Chem. Phys. 99 (5), 3542–3552.

    Google Scholar 

  • Martin, J. M. L., Francois, J. P., and Gijbels, R., 1989, Combined bond-polarization basis sets for accurate determination of dissociation energies, II. Basis set superposition error as a function of the parent basis set, J. Comput. Chem. 10, 875–886.

    Google Scholar 

  • Moore, J. W. and Pearson, R. G., 1981, Kinetics and Mechanisms, Wiley, New York, 455 pp.

    Google Scholar 

  • Pszenny, A. A. P., Keene, W. C., Jacob, D. J., Fan, S., Maben, J. R., Zetwo, M. P., Springer-Young, M., and Galloway, J. N., 1993, Evidence of inorganic chlorine gases other than hydrogen chloride in marien surface air, Geophys. Res. Lett. 20 (8), 699–702.

    Google Scholar 

  • Quay, P. D., King, S. L., Lansdown, J. M., Wilbur, D. O., 1988, Isotopic composition of methane released from wetlands: Implications for the increase in atmospheric methane, Global Biogeochemical Cycles 2, 385–397.

    Google Scholar 

  • Quay, P. D., King, S. L., Stutsman, J., Wilbur, D. O., Steele, L. P., Fung, I., Gammon, R. H., Brown, T. A., Farwell, G. W., Grootes, P. M., and Schmidt, F. H., 1991, Carbon isotopic composition of atmospheric methane: fossil and biomass burning source strengths, Global Biogeochemical Cycles 5 (1), 25–47.

    Google Scholar 

  • Rust, F. E., 1981, Ruminant methane δ(13C/12C) values: relation to atmospheric methane, Science 211, 1044–1046.

    Google Scholar 

  • Sauer, J., 1989, Molecular models in ab-initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysis, Chem. Rev. 89, 199–255.

    Google Scholar 

  • Schlegel, H. B., 1986, Potential energy curves using unrestricted Møller-Plesset perturbation theory with spin annihilation, J. Chem. Phys. 84, 4530–4534.

    Google Scholar 

  • Stevens, C. M. and Rust, F. E., 1982, The carbon isotopic composition of atmospheric methane, J. Geophys. Res. 87, 4879–4882.

    Google Scholar 

  • Stevens, C. and Engelkemeir, A., 1988, Stable carbon isotopic composition of methane from some natural and anthropogenic sources, J. Geophys. Res. 93 (D1), 725–733.

    Google Scholar 

  • Truong, N. T., and Truhlar, D. G., 1990, Ab initio transition state theory calculations of the reaction rate OH+CH4→H2O+CH3, J. Chem. Phys. 93, 1761–1769.

    Google Scholar 

  • Tully, F. P., Ravishankara, A. R., Thompson, R. L., Nicovich, J. M., Shah, R. C., Kreutter, N. M. and Wine, P. H., 1981, Kinetics of the reactions between hydroxyl radical with benzene and toluene, J. Phys. Chem. 85, 2262–2269.

    Google Scholar 

  • Tyler, S. C., 1986, Stable carbon isotope ratios in atmospheric methane and some of its sources. J. Geophys. Res. 91 (D12), 13232–13238.

    Google Scholar 

  • Tyler, S. C., 1987, 13C/12C ratio in methane from the flooded Amazon forest, J. Geophys. Res. 92 (D1), 1044–1048.

    Google Scholar 

  • Tyler, S. C., 1992, Kinetic isotope effects and their use in studying atmospheric trace species; case study, CH4+OH, in: Isotope Effects in Gas-Phase Chemistry, American Chemical Society, pp. 390–408.

  • Van Hook, W. A., 1970, Kientic isotope effect: Introduction and discussion of the theory, in C. J. Collins and N. S. Bowman (eds.), Isotope Effect in Chemical Reactions, Van Nostrand Reinhold Co., New York.

    Google Scholar 

  • Wahlen, M., Tanaka, N., Henry, R., Deck, B., Zeglen, J., Vogel, J. S., Southern, J., Shemesh, A., Fairbanks, R., and Broecker, W., 1989a, Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon, Science 245, 286–290.

    Google Scholar 

  • Wahlen, M., Deck, B., Henry, R., Tanaka, N., Shemesh, A., Fairbanks, R., and Broecker, W., 1989b, Profiles of δ13C of CH4 from the lower stratosphere, EOS, Trans. Amer. Geophys. Union 70 (No. 43), 1017.

    Google Scholar 

  • Wahlen, M., Tanaka, N., Henry, R., Deck, B., Broecker, W., Shemesh, A., and Fairbanks, R., 1990, 13C, D and 14C in Methane, in Rep. to Congress and the EPA on NASA Upper Atmos. Res. Prog., NASA, Washington DC, pp. 324–325.

  • Wahlen, M., 1993, The global methane cycle, Annu. Rev. Earth and Planet Sci. 21, 407–426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, N., Xiao, Y. & Lasaga, A.C. Ab initio study on carbon Kinetic Isotope Effect (KIE) in the reaction of CH4+Cl•. J Atmos Chem 23, 37–49 (1996). https://doi.org/10.1007/BF00058703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058703

Key words

Navigation