Skip to main content
Log in

Aging of savanna biomass burning aerosols: Consequences on their optical properties

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

During the FOS-DECAFE experiment at Lamto, Ivory Coast, in January 1991, various ground studies were undertaken simultaneously in order to investigate the physical and chemical characteristics of smoke emitted by savanna biomass burning. Here we present sunphotometer ground-based results which allow the measurements of the spectral optical depth between 450 and 850 nm, the atmospheric water vapour content and the particle size distribution spectrum. The carbonaceous content of the savanna biomass burning aerosols is also investigated. This is the first time that the physical characteristics of particles emitted by savanna plumes are obtained from ground-field studies. All the results suggest that a rapid aging of the smoke occurs first hundred metres from the savanna fire èmission source. They show a relationship between the optical properties of smoke and the chemical aging of the aerosols primarily due to particle growth and a loss of organic material relative to the black carbon content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, T. P. and Toon, O. B., 1981, Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles,Appl. Opt. 20, 3661–3667.

    Google Scholar 

  • Angström, A., 1929, On the atmospheric transmission of sun radiation and on dust in the air,Geogr. Ann. 11, 156–166.

    Google Scholar 

  • Bergström, R. W., Ackerman, T. P., and Richards, L. W., 1982, The optical properties of particulate elemental carbon, in G. T. Wolff and R. L. Klimisch (eds.),Particulate Carbon: Atmospheric Life Cycle, Plenum Press, New York, pp. 43–49.

    Google Scholar 

  • Box, M. A. and Deepack, A., 1979, Atmospheric scattering corrections to solar radiometry,Appl. Opt. 18, 1941–1949.

    Google Scholar 

  • Cachier, H., Brémond, M. P., and Buat-Ménard, P., 1989, Determination of atmospheric soot carbon with a simple thermal method,Tellus 41B, 379–390.

    Google Scholar 

  • Cachier, H., Ducret, J., Brémond, M. P., Yoboué, V., Lacaux, J. P., Gaudichet, A., and Baudet, J., 1991, Biomass burning aerosols in a savanna region of the Ivory Coast, in J. S. Levine (ed.),Global Biomass Burning, MIT Press, Cambridge, MA, pp. 174–180.

    Google Scholar 

  • Cachier, H., Liousse, C., Buat-Ménard, P., and Gaudichet, A., 1995, Particulate content of savanna fire emissions,J. Atmos. Chem. 22, 123–148 (this issue).

    Google Scholar 

  • Chylek, P., Ramaswamy, V., Cheng, R., and Pinnick, R. G., 1981, Optical properties and mass concentration of carbonaceous smokes,Appl. Opt. 20, 2980–2984.

    Google Scholar 

  • Clarke, A. D., 1989, Aerosol light absorption by soot in remote environments,Aerosol Sci. Technol. 10, 161–171.

    Google Scholar 

  • Coakley, J. A. Jr., Cess, R. D., and Yurevich, F. B., 1983, The effect of tropospheric aerosol on the Earth's radiation budget: A parameterization for climate models,J. Atmos. Sci. 40, 116.

    Google Scholar 

  • Crutzen, P. J. and Andreae, M. O., 1990, Biomass burning in the Tropics: Impact on atmospheric chemical and biogeochemical cycles,Science 250, 1669–1678.

    Google Scholar 

  • Ducret, J. and Cachier, H., 1992, Particulate carbon in continental region rains and snows,J. Atmos. Chem. 15, 55–67.

    Google Scholar 

  • Frouin, R., Deschamps, P. Y., and Lecomte, P., 1989, Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,J. Appl. Meteorol. 29, 448–460.

    Google Scholar 

  • Hansen, A. D. A., Rosen, H., and Novakov, T., 1984, The aethalometer: an instrument for the real-time measurement of optical absorption by aerosol particles,Sci. Total. Environ. 36, 191–196.

    Google Scholar 

  • Heintzenberg, J., 1982, Measurement of light absorption elemental carbon in atmospheric aerosol samples from remote locations, in G. T. Wolff and R. L. Klimisch (eds.),Particulate Carbon: Atmospheric Life Cycle, Plenum Press, New York, pp. 371–377.

    Google Scholar 

  • Hobbs, P. V. and Radke, L. F., 1969, Cloud condensation nuclei from a simulated forest fire,Science 163, 279–280.

    Google Scholar 

  • Hobbs, P. V., Hegg, D. A., Eltgroth, M. W., and Radke, L. F., 1979, Evolution of particles in the plumes of coal-fired power plants — I. Deductions from field measurements,Atmos. Environ. 12, 935–951.

    Google Scholar 

  • Holben, B. N., Kaufman, Y. J., Setzer, A. W., Tanré, D., and Ward, D. E., 1991, Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A, in J. S. Levine (ed.),Global Biomass Burning, MIT Press, Cambridge, MA, pp. 403–411.

    Google Scholar 

  • Japar, S. M., Szkarlat, A. C., and Pierson, W. R., 1984, The determination of the optical properties of airborne particle emissions from diesel vehicles,Sci. Total Environ. 36, 121–130.

    Google Scholar 

  • Jennings, S. G. and Pinnick, R. G., 1980, Relationship between visible extinction absorption and mass concentration of carbonaceous smokes,Atmos. Environ. 14, 1123–1129.

    Google Scholar 

  • Junge, C. E., 1963, Optical properties of aerosols, in Van Mieghem (ed.),Air Chemistry and Radioactivity, Academic Press, New York, pp. 141–146.

    Google Scholar 

  • Kaufman, Y. R., Tucker, C. J., and Fung, I., 1990a, Remote sensing of biomass burning in the tropics,J. Geophys. Res. 95, 9927–9939.

    Google Scholar 

  • Kaufman, Y. J., Fraser, R. S., and Ferrare, R. A., 1990b, Satellite measurements of large-scale air pollution: Methods,J. Geophys. Res. 95, 9895–9909.

    Google Scholar 

  • Kaufman, Y. J., Setzer, A., Ward, D., Tanré, D., Holben, B. N., Menzel, P., Pereira, M. C., and Rasmussen, R., 1992, Biomass burning airborne and spaceborne experiment in the Amazonas (Base-A),J. Geophys. Res. 97, 14581–14599.

    Google Scholar 

  • King, M. D., Byrne, D. M., Herman, B. M., and Reagan, J. A., 1978, Aerosol size distributions obtained by inversion of spectral optical depth measurements,J. Atmos. Sci. 35, 2153–2167.

    Google Scholar 

  • Lacaux, J. P., Cachier, H., and Delmas, R., 1993, Biomass burning in Africa: An overview of the impact on the atmospheric chemistry, in P. J. Crutzen and J. G. Goldammer (eds.),Fire in the Environment: Ecological, Climatic and Atmospheric Chemical Importance, Wiley, Chichester, pp. 159–191.

    Google Scholar 

  • Levine, J. S., 1990, Global biomass burning: atmospheric, climatic and biospheric implications,EOS 71, 37.

    Google Scholar 

  • Liousse, C. and Cachier, H., 1992, Measurement of black carbon aerosols in the atmosphere of two different regions: real time data for the Paris region and a savannah site of the Ivory coast,Environ. Tech. Lett. 13, 959–967.

    Google Scholar 

  • Liousse, C., Cachier, H., and Jennings, S. G., 1993, Optical and thermal measurements of black carbon aerosol content in different environments: Variation of the specific attenuation cross-section, sigma (σ),Atmos. Environ. 27A, 1203–1211.

    Google Scholar 

  • Mateer, C. L., DeLuisi, J. J., and Porco, C. C., 1980, The short umkehr method, part 1: Standard Ozone profiles for use in the estimation of ozone profiles by the inversion of short umkehr observations, NOAA Technical Memorandum ERL ARL-86.

  • McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Voltz, F. E., and Garing, J. S., 1971, Optical properties of the atmosphere, Report AFCRL-TR-71-0279, Environ. Research Paper 354, Air Force Cambridge Res. Lab., Bedford, Mass.

    Google Scholar 

  • Ogren, J. A. and Charlson, R. J., 1983, Elemental carbon in the atmosphere: Cycle and life-time,Tellus 35B, 241–254.

    Google Scholar 

  • Penner, J. E. and Porch, W. M., 1987, Coagulation in smoke plumes after a nuclear war,Atmos. Environ. 21, 957–969.

    Google Scholar 

  • Pueschel, R. F., Livingston, J. M., Russel, P. B., Colburn, D. A., Ackerman, T. P., Allen, D. A., Zak, B. D., and Einfeld, W., 1988, Smoke optical depths: Magnitude, variability, and wavelength dependence,J. Geophys. Res. 93, 8388–8402.

    Google Scholar 

  • Pueschel, R. F. and Livingston, J. M., 1990, Aerosol spectral optical depths: Jet fuel and forest fire smokes,J. Geophys. Res. 95, 22417–22422.

    Google Scholar 

  • Radke, L. F., Hegg, D. A., Hobbs, P. V., Nance, J. D., Lyons, J. H., Laursen, K. K., Weiss, R. E., Riggan, P. J., and Ward, D. E., 1991, Particulate and trace gas emissions from large biomass fires in North America, in J. S. Levine (ed.),Global Biomass Burning, MIT Press, Cambridge, MA, pp. 209–224.

    Google Scholar 

  • Rogers, F. C., Hudson, J. G., Zielinska, B., Tanner, R. L., Hallet, J., and Watson, J. G., 1991, Cloud condensation nuclei from biomass burning, in J. S. Levine (ed.),Global Biomass Burning, MIT Press, Cambridge, MA, pp. 431–438.

    Google Scholar 

  • Rosen, H., Hansen, A. D. A., Gundel, L., and Novakov, T., 1978, Identification of the optically absorbing component in urban aerosols,Appl. Opt. 17, 3859–3861.

    Google Scholar 

  • Setzer, A. W. and Pereira, M. C., 1991, Amazonia biomass burning in 1987 and an estimate of their tropospheric emissions,Ambio 20, 19–22.

    Google Scholar 

  • Soufflet, V., Devaux, C., and Tanré, D., 1992, A modified Langley plot method to measure the spectral aerosol optical thickness and its daily variations,Appl. Opt. 31, 2154–2162.

    Google Scholar 

  • Stith, J. L., Radke, L. F., and Hobbs, P. V., 1981, Particle emissions and the production of ozone and nitrogen oxides from the burning of forest slash,Atmos. Environ. 15, 73–82.

    Google Scholar 

  • Tanré, D., Devaux, C., Herman, M., Santer, R., and Gac, J. Y., 1988a, Radiative properties of desert aerosols by optical ground-based measurements at solar wavelength,J. Geophys. Res. 93, 14223–14231.

    Google Scholar 

  • Tanré, D., Deschamps, P. Y., Devaux, C., and Herman, M., 1988b, Estimation of saharan aerosol thickness from blurring effects in thematic mapper data,J. Geophys. Res. 93, 15955–15964.

    Google Scholar 

  • Thomalla, E. and Quenzel, H., 1982, Information content of aerosol optical properties with respect of their size distribution,Appl. Opt. 21, 3170–3177.

    Google Scholar 

  • Twomey, S. A., Piepgrass, M., and Wolfe, T. L., 1984, An assessment of the impact of pollution on global cloud albedo,Tellus 36B, 356–366.

    Google Scholar 

  • Viera, G. and Box, M. A., 1987, Information contents analysis of aerosol remote sensing experiments using singular function theory 1: Extinction measurements,Appl. Opt. 26, 1312–1327.

    Google Scholar 

  • Woods, D. C., Chuan, R. L., Cofer, III, W. R., and Levine, J. S., 1991, Aerosol characterization in smoke plumes from a wetlands fire, in J. S. Levine (ed.),Global Biomass Burning, MIT Press, Cambridge, MA, pp. 240–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liousse, C., Devaux, C., Dulac, F. et al. Aging of savanna biomass burning aerosols: Consequences on their optical properties. J Atmos Chem 22, 1–17 (1995). https://doi.org/10.1007/BF00708178

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708178

Key words

Navigation