Skip to main content
Log in

N2O decomposition over (Mg6−xAx) MnO8 (A = Li, Al)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two different murdochite-type mixed oxides, (Mg6−x Li x )MnO8 (x = 0, 0.1, 0.2 and 0.3) and (Mg6−x Al x )MnO8 (x = 0, 0.2, 0.4, 0.6) were examined for the catalytic decomposition of N2O in order to make clear the effects of mixed valencies of pairing manganese ions and oxygen vacancies. The valence of manganese ions and the amount of surface oxygen vacancies have been examined with X-ray photoelectron spectroscopy (XPS). (Mg6−x Li x )MnO8 had mixed valence manganese ions and oxygen vacancies on the surface after the substitution. The substituted (Mg6−x Al x )MnO8 had a mixed valence state but oxygen vacancies decresed with x and excess oxygen over stoichiometry was observed at x = 0.4 and 0.6. The reaction rate of N2O decomposition increased after substitution with lithium but hardly increased after the substitution with aluminum in (Mg6−x A x )MnO8. We assumed that the presence of oxygen vacancies on the surface along with pairing altervalent manganese ions affected strongly to enhance the reactivity of N2O decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Kramlich and W. P. Linak, Prog. Energy Combust. Sci. 20 (1994) 149.

    Google Scholar 

  2. M. A. Wojtowicz, J. R. Pels and J. A. Moulijn, Fuel Proc. Technol. 34 (1993) 1.

    Google Scholar 

  3. F. Kapteijn, J. R. Mirasol and J. A. Moulijn, Appl. Catal. B 9 (1996) 25.

    Google Scholar 

  4. G. I. Golodets, Stud. Surf. Sci. Cat. 15 (1983) 200.

    Google Scholar 

  5. J. Wang, H. Yasuda, K. Inumaru and M. Misono, Bull. Chem. Soc. Jpn. 68 (1995) 1226.

    Google Scholar 

  6. C. S. Swamy and J. Christopher, Catal. Rev.-Sci. Eng. 34 (1992) 409.

    Google Scholar 

  7. T. Yamashita and A. Vannice, J. Catal. 161 (1996) 254.

    Google Scholar 

  8. S. L. Raj, B. Viswanathan and V. Srinivasan, ibid. 75 (1982) 185.

    Google Scholar 

  9. J. S. Kasper and J. S. Prener, Acta Crystallogr. 7 (1954) 246.

    Google Scholar 

  10. P. Porta and M. Valigi, J. Solid State Chem. 6 (1973) 344.

    Google Scholar 

  11. H. Taguchi, A. Okamoto, M. Nagao and H. Kido, ibid. 102 (1993) 570.

    Google Scholar 

  12. H. Taguchi, A. Ohta, M. Nagao, H. Kido, H. Ando and K. Tabata, ibid. 124 (1996) 220.

    Google Scholar 

  13. B. D. Cullity, “Elements of X-ray Diffraction” (Addison-Weley, London, 1978) p. 102.

    Google Scholar 

  14. C. D. Wagner, Anal. Chem. 49 (1977) 1282.

    Google Scholar 

  15. Idem., “Practical Surface Analysis” (JohnWiley & Sons, New York, 1995) p. 595.

    Google Scholar 

  16. M. Oku, K. Hirokawa and S. Ikeda, J. Electron Spectrosc. Relat. Phenom. 7 (1995) 465.

    Google Scholar 

  17. M. Che and A. J. Tench. Adv. Catal. 32 (1983) 1.

    Google Scholar 

  18. M. Oku and K. Hirokawa, J. Electron Spectrosc. Relat. Phenom. 8 (1976) 475.

    Google Scholar 

  19. T. L. Barr, “Modern ESCA” (CRC Press, Boca Raton, 1994) p. 186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabata, K., Karasuda, T., Suzuki, E. et al. N2O decomposition over (Mg6−xAx) MnO8 (A = Li, Al). Journal of Materials Science 35, 4031–4037 (2000). https://doi.org/10.1023/A:1004878019341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004878019341

Keywords

Navigation