Skip to main content
Log in

Effects of the SiC/Al interface reaction on fracture behavior of a composite conductor using SiC fiber reinforced aluminum for next generation power equipment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrical power demands are increasing every year, meaning that lightweight electric cable is needed which has high transmission capacity, high thermal resistance and low sag. Tokyo Electric Power Co., Chubu Electric Power Co. and Hitachi Cable Ltd. have been breaking new ground in the field of electric cable through the development of a SiC fiber reinforced aluminum conductor. In this work, the SiC/Al interface reaction during the manufacturing process and the electricity transmission temperature were studied by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and field emission-Auger electron spectroscopy (FE-AES) for long-term reliability assessment. No reaction products were detected at the SiC/Al interface of elemental wire consisting of 7 SiC/Al preformed wires, indicating that the wire manufacturing process was reliable. An Al4C3 product was detected locally at the SiC/Al interface of the wire which had been thermally treated in molten Al under unfavorable conditions. The activation energy, Q, of Al4C3 growth at the SiC/Al interface was about 190 kJ/mol. In the temperature range of electricity transmission, Al atoms diffused into SiC fiber during heat treatment, and the amount of the diffused Al increased with increasing treatment temperature and holding time. The activation energy of Al diffusion through the SiC/Al interface to SiC fiber was about 78 kJ/mol. Strength deterioration was not induced by Al diffusion into SiC fiber, but strength strongly depended on the formation of Al2SiO5 compound at the SiC/Al interface above 400°C transmission temperatures. Kinetics calculations indicated that the rate of strength deterioration of the composite cable, held at 300°C for 36 years, was about 5%, so that practical use of SiC/Al composite cable should not be far in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ouchi et al., in Proceedings of National Convention Record I.E.E. Japan (Waseda Univ., Tokyo, (1996) p. 7.1.

  2. J. Sawada et al., in Proceedings of the Seven Annual Conference of Power & Energy Society, IEE of Japan (Osaka Univ., Osaka, (1996) p. 739.

  3. Y. Kagawa and B.-H. Choi, J. Japan Inst. Metals 53 (1989) 339.

    Google Scholar 

  4. Y. Imai, M. Takeda, H. Ichikawa and T. Ishikawa, J. Japan Inst. Light Metals 40 (1990) 202.

    Google Scholar 

  5. M. Kondo, Y. Imai, H. Tezuka and A. Kohyama, ISIJ International 75 (1989) 1463.

    Google Scholar 

  6. J. Tanaka, H. Ichikawa, T. Hayase, K. Okamura and T. Matsuzawa, Prog. Sci. Eng. Compos. 2 (1982) 1407.

    Google Scholar 

  7. S. J. Swindlehurst and I. W. Hall, J. Mater. Sci. 29 (1994) 1075.

    Google Scholar 

  8. A. R. Chapman, S. M. Bleay and V. D. Scott, ibid. 29 (1994) 4523.

    Google Scholar 

  9. H. Liu, U. Madaleno, T. Shinoda, Y. Mishima and T. Suzuki, ibid. 25 (1990) 4247.

    Google Scholar 

  10. H. Tezuka, Y. Imai, M. Kondo and A. Kohyama, ISIJ International 75 (1989) 1470

    Google Scholar 

  11. H.-M. Cheng, B.-L. Zhou, A. Kitahara and K. Kobayashi, J. Mater. Res. 11 (1996) 1284.

    Google Scholar 

  12. K. Matsunaga, S. Ochiai, K. Osamura, Y. Waku and T. Yamamura, J. Japan Inst. Metals 57 (1993) 1035.

    Google Scholar 

  13. P. P. Trzaskama and E. Mccafferty, J. Electrochem. Soc. 130 (1983) 1804.

    Google Scholar 

  14. D. M. Aylor and P. J. Moran, ibid. 132 (1985) 1277.

    Google Scholar 

  15. Y.-C. Park, G.-C. Lee, T. Mihara and K. Date, J. Japan Inst. Metals 57 (1993) 301.

    Google Scholar 

  16. J.-J. Lim and K.-S. Kim, Trans. Korean Soc. Mech. Eng. 17 (1993) 2498.

    Google Scholar 

  17. T. G. Nieh, Metall Trans. A 15 (1984) 139.

    Google Scholar 

  18. N. Tsangarakis, B. O. Andrews and O. C. Cavallar, J. Compos. Mater. 21 (1987) 481.

    Google Scholar 

  19. D. Rouby and H. Osmani, J. Mater. Sci. Lett. 7 (1988) 1154.

    Google Scholar 

  20. C. Badini, J. Mater. Sci. 25 (1990) 2607.

    Google Scholar 

  21. H.-S. Yoon, A. Okura and H. Ichinose, ISIJ International 75 (1989) 1455.

    Google Scholar 

  22. I. H. Khan, Met. Trans. 7A 9 (1976) 1982.

    Google Scholar 

  23. K. Yamada, S. Sekiguchi, K. Hashimoto and T. Ishida, J. Japan Inst. Metals 59 (1995) 15.

    Google Scholar 

  24. S. Towata and S. Yamada, ibid. 47 (1983) 159.

    Google Scholar 

  25. X.-C. Liu and K.-T. Wei, Jinshu Xuebao 24 (1988) B115.

    Google Scholar 

  26. S. L. Coleman, V. D. Scott and B. Mcenaney, J. Mater. Sci. 29 (1994) 2826.

    Google Scholar 

  27. A. H. Carim, Mater. Lett. 12 (1991) 153.

    Google Scholar 

  28. Y. Imai, K. Uemura, H. Ichikawa and T. Ishikawa, J. Japan Inst. Light Metals 40 (1990) 195.

    Google Scholar 

  29. S. D. Peteves, P. Tambuyser and P. Helbach, J. Mater. Sci. 25 (1990) 3765.

    Google Scholar 

  30. S. Yajima, K. Okamura, J. Hayashi and M. Omori, J. Amer. Ceram. Soc. 59 (1976) 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasutomi, Y., Sawada, J., Kikuchi, T. et al. Effects of the SiC/Al interface reaction on fracture behavior of a composite conductor using SiC fiber reinforced aluminum for next generation power equipment. Journal of Materials Science 34, 1583–1593 (1999). https://doi.org/10.1023/A:1004524516143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004524516143

Keywords

Navigation