Skip to main content
Log in

Physico-chemical characterisation of native air-formed oxide films on Al-Mg alloys at low temperature. Influence of water

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural oxide films on two cold-rolled Al-Mg alloys were studied using several techniques (XPS, SIMS, ToF-SIMS, GDOS, SEM, TEM, Wetting measurements). The aim was to characterise and compare the oxide layers formed on the two materials in order to better understand the influence of the thermomechanical history. The experimental tools used allowed the determination of the influence of the annealing process on the nature and structure of the oxides. The hydration and Brönsted behaviour were also investigated. The thickness of the layer, the amount of magnesium oxide and its dissolving resistance in water are strongly modified by the annealing. The oxide film formed on the annealed material is twice as thick as the one on the non-reheated material. The layer on the annealed material contains more magnesium oxide and contains the crystalline forms:β-Al2O3 and bayerite (Al(OH)3). On the contrary, the oxide film formed on the as-rolled material seems to be amorphous. The magnesium oxide is less soluble in water in the annealed film than in the non-reheated one. Furthermore, aluminium and magnesium oxides were found to be hydroxylated on both alloys, and the layer surfaces to behave like a Brönsted meaning base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. De Brouckere, J. Inst. Met. 71 (1945) 131.

    Google Scholar 

  2. J. Benard, in “L'Oxydation Des M´etaux” (Gauthiers-Villars, Paris, 1964) pp. 363–366.

    Google Scholar 

  3. A. Nylund and I. Olefjord, Surf. Interface Anal. 21 (1994) 283.

    Google Scholar 

  4. K. Mizuno, A. Nylund and I. Olefjord, Mater. Sci. Technol. 12 (1996) 306.

    Google Scholar 

  5. G. R. Wakefield and R. M. Sharp, Appl. Surf. Sci. 51 (1991) 95.

    Google Scholar 

  6. T. S. Sun, J. M. Chen, R. K. Viswanadham and J. A. S. Green, J. Vac. Sci. Technol. 16(2) (1979) 668.

    Google Scholar 

  7. M. Textor and R. Grauer, Corros. Sci. 23(1) (1983) 41.

    Google Scholar 

  8. A. Arranz and C. Palacio, Surf. Sci. 355 (1996) 203.

    Google Scholar 

  9. T. L. Barr, S. Seal, L. M. Chen and C. C. Kao, Thin Solid Films 253 (1994) 277.

    Google Scholar 

  10. D. Briggs and M. P. Seah, “Auger and X-ray Photoelectron Spectroscopy” (Wiley, Chichester, 1996) pp. 153, 209, 599–602.

  11. E. Mccafferty and J. P. Wightman, Surf. Interface Anal. 26 (1998) 549.

    Google Scholar 

  12. S. Ardizzone, C. L. Bianchi, M. Fadori and B. Vercelli, Appl. Surf. Sci. 119 (1997) 253.

    Google Scholar 

  13. J. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy” (Perkin-Elmer Corporation, 1992) p. 25.

  14. J. H. Scofield, J. Elect. Spectrosc. Related Phenomena 8 (1976) 329.

    Google Scholar 

  15. C. Lea and J. Ball, Applications of Surf. Sci. 17 (1984) 344.

    Google Scholar 

  16. S. Lopez, J. P. Petit, H. M. Dunlop, J. R. Butruille and G. Tourillon, J. Electrochem. Soc. 145(3) (1998) 823.

    Google Scholar 

  17. F. Cordier and E. Ollivier, Surf. Interface Anal. 23 (1995) 601.

    Google Scholar 

  18. N. A. Thorne, P. Thuery, A. Frichet, P. Gimenez and A. Sartre, ibid. 16 (1990) 236.

    Google Scholar 

  19. M. Pijolat, V. Chiavana and R. Lalanze, Appl. Surf. Sci. 31 (1988) 179.

    Google Scholar 

  20. M. S. Hunter and P. Fowle, J. Electochem. Soc. 103 (1956) 482.

    Google Scholar 

  21. P. E. Doherty and R. S. Davis, J. Appl. Phys. 34 (1963) 619.

    Google Scholar 

  22. A. J. Brock and M. A. Heine, J. Electrochem. Soc. 119 (1972) 1124.

    Google Scholar 

  23. A. Kimura, M. Shibata, K. Kondoh, Y. Takada, M. Katayama, T. Kanie and H. Takada, Appl. Phys. Lett. 70(26) (1997) 3615.

    Google Scholar 

  24. P. L. J. Gunter, H. J. Borg and J. Niemant-Sverdriet, J. Vac. Sci. Technol. A10(4) (1992) 2846.

    Google Scholar 

  25. T. L. Barr, ibid. 14 (1977) 660.

    Google Scholar 

  26. F. Degreve and J. M. Lang, Proceedings of Mat. Res. Soc. Symp. 48 (1985) p. 241.

    Google Scholar 

  27. S. Scotto, V. Zwilling, E. Darque-Ceretti and M. Aucouturier, Revue deM´etallurgie, n± hors s´erie (1996) 173.

  28. S. Sugunan and B. Jacob, Indian J. Eng. Mat. Sci. 4 (1997) 120.

    Google Scholar 

  29. M. Pourbaix, in “Atlas d' ´ Equilibres ´ Electrochimiques `a25 ±C,” edited by Gauthiers (Villars and Cie, Paris, 1963), pp. 141, 172.

  30. M. Casamassima, in “Caract´erisation des propri´et´es acide/ base des surfaces d'oxydes d'aluminium et de silicium en vue de la compr´ehension des m´ecanismes d'adh´esion avec un mastic silicone,” Thesis, ENSMP, 1991.

  31. T. S. Sun, J. M. Chen, J. D. Venables and R. Hopping, Appl. Surf. Sci. 1 (1978) 202.

    Google Scholar 

  32. A. Stralin and T. Hjertberg, ibid. 741 (1994) 263.

    Google Scholar 

  33. G. M. Scamans and A. S. Rehal, J. Mat. Sci. 14 (1979) 2459.

    Google Scholar 

  34. B. R. Baker and J. D. Balser, Aluminum 3 (1976) 197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scotto-Sheriff, S., Darque-Ceretti, E., Plassart, G. et al. Physico-chemical characterisation of native air-formed oxide films on Al-Mg alloys at low temperature. Influence of water. Journal of Materials Science 34, 5081–5088 (1999). https://doi.org/10.1023/A:1004709032754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004709032754

Keywords

Navigation