Skip to main content
Log in

Infiltration-processed, functionally graded aluminium titanate/zirconia–alumina compositePart I Microstructural characterization and physical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel route for processing aluminium titanate (AT)/(alumina–zirconia (AZ)) with graded microstructure and properties is described. This process offers a simple means of tailoring the composition and microstructure of ceramic materials. The processing involves infiltrating porous AZ preforms with a solution of TiCl4, followed by sintering at 1550°C for 3 h. The resultant material has a homogeneous core encased with a graded and heterogeneous layer of AT/AZ. Analyses by X-ray diffraction and energy-dispersive spectrometry have revealed the existence of concentration gradients, the AT content decreasing with increasing sample depth. The presence of both AT and zirconia inhibits the growth of alumina grains through a pinning mechanism. The existence of microcracking in AT and zirconia grains has been revealed by scanning electron microscopy. The graded material displays gradual changes in thermal expansion values due to the presence of AT which gradually reduces in amount from the surface to the core. The inclusion of zirconia has a favourable effect on the thermal stability of AT against phase decomposition. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P. Stingl, J. Heinrich and J. Huber, in Proceedings of the Second International Symposium on Ceramic Materials and Components for Engines, Lubeck-Travemunde, April 1986, edited by W. Bunk and H. Hausner (DKG, Bad Honnef, 1986) pp. 369-380.

    Google Scholar 

  2. G. Tilloca, J. Mater. Sci. 26 (1991) 2809.

    Google Scholar 

  3. G. Battilana, V. Buscaglia, P. Nanni and G. Aliprandi, in “High performance materials in engine technology”, edited by P. Vincenzini (Techna Srl., 1995) pp. 147-154.

  4. M. Ishitsuka, T. Sato, T. Endo and M. Shimada, J. Amer. Ceram. Soc. 70 (1987) 69.

    Google Scholar 

  5. H. Morishima, Z. Kato and K. Uematsu, ibid. 69 (1986) C226.

    Google Scholar 

  6. P. Pena, S. De Aza and J. S. Moya, in Ceramic Microstructures '86. Role of Interfaces, edited by J. Pask and A. G. Evans (Plenum, New York, 1987) pp. 847-857.

    Google Scholar 

  7. H. Morishima, J. Mater. Sci. Lett. 6 (1987) 389.

    Google Scholar 

  8. H. A. Thomas, R. Stevens and E. Gilbart, J. Mater. Sci. 26 (1991) 3613.

    Google Scholar 

  9. F. J. Parker, J. Amer. Ceram. Soc. 73 (1990) 929.

    Google Scholar 

  10. H. Wohlfromm, J. S. Moya and P. Pena, J. Mater. Sci. 25 (1990) 3753.

    Google Scholar 

  11. B. Freudenberg and A. Mocellin, J. Amer. Ceram. Soc. 70 (1987) 33.

    Google Scholar 

  12. M. P. Harmer, H. M. Chan and G. A. Miller, ibid. 75 (1992) 1715.

    Google Scholar 

  13. N. P. Padture, S. J. Bennison and H. M. Chan, ibid. 76 (1993) 2312.

    Google Scholar 

  14. L. An and H. M. Chan, J. Amer. Ceram. Soc. 79 (1998) 3142.

    Google Scholar 

  15. P. L. Chen and I. W. Chen, J. Amer Ceram. Soc. 75 (1992) 2610.

    Google Scholar 

  16. J. Wang, C. B. Ponton and P. M. Marquis, Brit. Ceram. Trans. 92 (1993) 67.

    Google Scholar 

  17. P. E. D. Morgan and D. B. Marshall, J. Amer. Ceram. Soc. 78 (1995) 1553.

    Google Scholar 

  18. C. J. Russo, M. P. Harmer, H. M. Chan and G. A. Miller, ibid. 75 (1992) 3396.

    Google Scholar 

  19. L. An, H. M. Chan, N. P. Padture and B. R. Lawn, J. Mater. Res. 11 (1996) 204.

    Google Scholar 

  20. N. P. Padture, D. C. Pender, S. Wuttiphan and B. R. Lawn, J. Amer. Ceram. Soc. 78 (1995) 3160.

    Google Scholar 

  21. H. Liu, B. R. Lawn and S. M. Hsu, ibid. 79 (1996) 1009.

    Google Scholar 

  22. B. R. Marple and D. J. Green, ibid. 73 (1990) 3611.

    Google Scholar 

  23. Idem. J. Amer. Ceram. Soc. ibid. 74 (1991) 2453.

  24. Idem. J. Amer. Ceram. Soc. ibid. 75 (1992) 44.

  25. I. M. Low, R. D. Skala, R. Richards and D. S. Perera, J. Mater. Sci. Lett. 12 (1993) 1585.

    Google Scholar 

  26. I. M. Low, R. D. Skala and D. S. Perera, ibid. 13 (1994) 1334.

    Google Scholar 

  27. I. M. Low, R. D. Skala and D. Li, ibid. 13 (1994) 1354.

    Google Scholar 

  28. I. M. Low, R. D. Skala and D. Zhou, ibid. 15 (1996) 345.

    Google Scholar 

  29. S. Pratapa and I. M. Low, ibid. 15 (1996) 800.

    Google Scholar 

  30. W. C. Tu and F. F. Lange, J. Amer. Ceram. Soc. 78 (1995) 3277.

    Google Scholar 

  31. R. J. Hill, C. J. Howard and B. A. Hunter, “LHPM, Rietveld refinement program manual”, (Australian Atomic Energy Commision, Lucas Heights Research Laboratory, Menau, New South Wales, 1986).

    Google Scholar 

  32. S. Pratapa, MSc thesis, Curtin University of Technology, Perth, Western Australia (1997).

    Google Scholar 

  33. S. Pratapa, B. H. O'Connor and I. M. Low, Powder diffraction (1998) in press.

  34. J. C. Wurst and J. A. Nelson, J. Amer. Ceram. Soc. 55 (1972) 109.

    Google Scholar 

  35. Australian Standards, Refractories and Refractory Materials-Physical Test Methods, Method 5: The Determination of Density, Porosity and Water Absorption: 1774.5, Standard Australia (1989).

    Google Scholar 

  36. E. Kato, K. Daumon and J. Takahashi, J. Amer. Ceram. Soc. 63 (1980) 355.

    Google Scholar 

  37. A. Feltz and F. Schmidt, J. Eur. Ceram. Soc. 6 (1990) 107.

    Google Scholar 

  38. G. Bayer, J. Less-Common Metals 24 (1971) 129.

    Google Scholar 

  39. M. S. Gani and R. McPherson, Thermochim. Acta 7 (1973) 251.

    Google Scholar 

  40. Y. Ohya, K. Hamano and Z. Nakagawa, Yogyo-Kyokau-Shi 91 (1993) 289.

    Google Scholar 

  41. M. Persson, L. Hermansson and R. Carlsson, Sci. Ceram. 11 (1981) 479.

    Google Scholar 

  42. D. P. H. Hasselmann, K. Y. Donaldson, E. M. Anderson and J. A. Johnson, J. Amer. Ceram. Soc. 76 (1993) 2180.

    Google Scholar 

  43. H. Wohlfromm, T. Epicier, J. S. Moya, P. Pena and G. Thomas, J. Eur. Ceram. Soc. 7 (1991) 385.

    Google Scholar 

  44. B. Lee and K. Hiraga, J. Mater. Res. 9 (1994) 1199.

    Google Scholar 

  45. J. L. Runyan and S. J. Bennison, J. Eur. Ceram. Soc. 7 (1991) 93.

    Google Scholar 

  46. L. M. Braun, S. J. BennÌson and B. R. Lawn, J. Amer Ceram. Soc. 75 (1992) 3049.

    Google Scholar 

  47. F. F. Lange and M. M. Hirlinger, ibid. 67 (1984) 164.

    Google Scholar 

  48. B. R. Marple and D. J. Green, J. Mater. Sci. 28, (1993) 4637.

    Google Scholar 

  49. C. Hwang, Z. Nakagawa and K. Hamano, J. Ceram. Soc. Jpn. 102 (1994) 253.

    Google Scholar 

  50. J. J. Cleveland and R. C. Bradt, J. Amer. Ceram. Soc. 61 (1987) 478.

    Google Scholar 

  51. E. A. Bush and F. A. Hummel, ibid. 42 (1959) 388.

    Google Scholar 

  52. J. Wang and R. Stevens, J. Mater. Sci. 24 (1989) 3421.

    Google Scholar 

  53. Y. Ohya, Z. Nakagawa and K. Hamano, J. Amer. Ceram. Soc. 71 (1988) C232.

    Google Scholar 

  54. V. Buscaglia, P. Nanni, G. Battilana, G. Aliprandi and C. Carry, J. Eur. Ceram. Soc. 13 (1994) 411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratapa, S., Low, I.M. & O'connor, B. Infiltration-processed, functionally graded aluminium titanate/zirconia–alumina compositePart I Microstructural characterization and physical properties. Journal of Materials Science 33, 3037–3045 (1998). https://doi.org/10.1023/A:1004323201601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004323201601

Keywords

Navigation