Skip to main content
Log in

NMR characterization of injection-moulded alumina green compacts

Part I Nuclear spin-spin relaxation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Development of proton nuclear magnetic resonance (1H NMR) analysis at 400 MHz has been initiated to evaluate the binder in green injection-moulded alumina compacts. The nuclear spin-spin relaxation times,T 2, of protons in the binder components (paraffin wax, polypropylene, and stearic acid) were measured to allow comparison with those in the injection-moulded green compacts.1H nuclear spin echo signals were observed by a (π/2)-Τ-π-Τ-echo pulse sequence. Bloch's equations were used to calculate the spin-spin relaxation times from these echo intensities. TheT 2 for paraffin wax and polypropylene were in the 30–33 Μs range and their intensity decay behaviours were very similar. However, theT 2 value for stearic acid was found to be only 17 Μs and its echo signal intensity decayed more rapidly than those for paraffin wax and polypropylene. Binder content variations in three green compacts moulded from the same nominal blend composition were detected. Analysis of the moulded compacts also showed the presence of a species with aT 2 value near 300 Μs. This unexpected species may be the result of reaction during processing or the presence of moisture. The width of r.f. pulses used to measure echoes did not have a significant effect on relaxation times but should be considered in calculation of echo intensities at equilibrium and, hence, binder composition. This technique development is expected to allow analysis of both binder content and distribution in moulded components with application in process models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. GERMAN, K. F. HENS and S. T. P. LIN,Ceram. Bull. 70 (1991) 1294.

    Google Scholar 

  2. M. J. EDIRISINGHE and J. R. G. EVANS,Int. J. High Technol. Ceram. 2 (1986) 1.

    Article  Google Scholar 

  3. Idem, ibid. 2 (1986) 249.

    Article  Google Scholar 

  4. J. A. MANGELS and W. TRELA, “Advances in Ceramics”, Vol. 9, edited by J. Mangels (American Ceramic Society, Columbus, OH, 1984) p. 220.

    Google Scholar 

  5. B. C. MUTSUDDY,Proc. Br. Ceram. Soc. 33 (1983) 117.

    Google Scholar 

  6. K. H. SWEENEY and R. D. GECKLER,J. Appl. Phys. 25 (1954) 1135.

    Article  Google Scholar 

  7. A. JOHNSON, E. CARLSTROM, L. HERMANSSON and R. CARLSSON,Proc. Br. Ceram. Soc. 33 (1983) 139.

    Google Scholar 

  8. A. M. LITMAN, N. R. SCHOTT and S. W. TOZLOWSKI,Soc. Plas. Eng. Technol. 22 (1976) 549.

    Google Scholar 

  9. F. F. LANGE,J. Am. Ceram. Soc. 66 (1983) 393.

    Google Scholar 

  10. B. KELLET and F. F. LANGE,ibid. 67 (1984) 369.

    Google Scholar 

  11. F. F. LANGE and F. METCALF,ibid. 66 (1983) 398.

    Google Scholar 

  12. F. F. LANGE, B. E. DAVIS and I. A. AKSAY,ibid. 66 (1983) 407.

    Google Scholar 

  13. I. PELTSMAN and M. PELTSMAN,Interceram. 4 (1984) 56.

    Google Scholar 

  14. J. A. MANGELS,Ceram. Eng. Sci. Proc. 3 (1982) 529.

    Google Scholar 

  15. I. I. RUBIN, “Injection Moulding Theory and Practice” (Wiley, New York 1972) pp. 270–317.

    Google Scholar 

  16. A. JOHNSSON, E. CARLSTROM, L. HERMANSSON and R. CARLSSON,Proc. Br. Ceram. Soc. 33 (1983) 139.

    Google Scholar 

  17. K. NAGAYA, A. SOBAJIMA and H. YANO,Am. Suppl. Inst. J 4 (1991) 7.

    Google Scholar 

  18. D. WOLF, “Spin-Temperature and Nuclear-Spin Relaxation in Matter: Basic Principles and Applications” (Clarendon Press, Oxford, 1979) Ch. 5.

    Google Scholar 

  19. H. TANAKA,Eur. Polym. J. 21 (1985) 673.

    Article  Google Scholar 

  20. M. ITO, H. SERIZAWA, K. TANAKA, W. P. LEUNG and C. L. CHOY,J. Polym. Sci. Polym. Phys. Edn 21 (1983) 2299.

    Google Scholar 

  21. H. TANAKA,J. Appl. Polym. Sci. 27 (1982) 2197.

    Article  Google Scholar 

  22. M. P. McDONALD and I. M. WARD,Proc. Phys. Soc. 80 (1962) 1249.

    Article  Google Scholar 

  23. V. J. McBRIERTY, D. C. DOUGLASS and D. R. FALCONE,J. Chem. Soc. Faraday Trans. II 68 (1972) 1051.

    Article  Google Scholar 

  24. V. J. McBRIERTY, D. C. DOUGLASS and P. J. BARHAM,J. Polym. Sci. Polym. Phys. Ed 18 (1980) 1561.

    Article  Google Scholar 

  25. E. L. HAHN,Phys. Rev. 80 (1950) 580.

    Article  Google Scholar 

  26. W. KUHN,Angew. Chem. 29(1) (1990) 1.

    Article  Google Scholar 

  27. H. Y. CARR and E. M. PURCELL,Phys. Rev. 94 (1954) 630.

    Article  Google Scholar 

  28. S. MEIBOOM and D. GILL,Rev. Sci. Instrum. 29 (1958) 6881.

    Article  Google Scholar 

  29. F. BLOCH,Phys. Rev. 70 (1946) 460.

    Article  Google Scholar 

  30. C. P. SLICHTER, “Principles of Magnetic Resonance” (Springer, Berlin, 1989) Ch. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P.S., Malghan, S.G., Dapkunas, S.J. et al. NMR characterization of injection-moulded alumina green compacts. J Mater Sci 30, 1059–1064 (1995). https://doi.org/10.1007/BF01178445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178445

Keywords

Navigation