Skip to main content
Log in

Modelling the behaviour of gas bubbles in an epoxy resin: Evaluating the input parameters for a diffusion model using a free-volume approach

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Models based on a mass-diffusion theory successfully represent the growth and collapse of gas bubbles in an epoxy resin. A quantitative evaluation of the steady-state diffusion equations requires values for the diffusion coefficient and the solubility of the mobile species within the resin precursor. These parameters are affected by changes in temperature and/or pressure, and they are generally not measured as part of a processing schedule. Models have been evaluated that predict the temperature dependence of the gas diffusion coefficient in the resin. A free volume approach describes the viscosity of the resin successfully at temperatures of up to 100 K above the glass-transition temperature. At higher temperatures, a thermal-energy-barrier approach is more appropriate. A direct correlation between the viscosity of the resin and the gas diffusion coefficient is proposed which is considered to be applicable to any gas/resin system where specific component interactions are negligible and the solute concentration is sufficiently low that it does not affect the free volume of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. WOOD, PhD thesis, University of Surrey, England (1992).

    Google Scholar 

  2. J. R. WOOD, and M. G., BADER, Proceedings of 8th International Conference on Composite Materials. Composites: Design, Manufacture and Application. (ICCM-8), Honolulu, edited by S. W. Tsai and G. S. Springer. (SAMPE, Covina, USA) paper no. 10-M, July (1991) 1–9.

    Google Scholar 

  3. H. EYRING,J. Chem. Phys. 4 (1936) 283.

    Article  Google Scholar 

  4. S., GLASSTONE, “Textbook of physical chemistry” (MacMillan, London, 1948) p. 499.

    Google Scholar 

  5. T. G. FOX, and P. J. FLORY,J. Phys. Chem. 55 (1951) p. 221.

    Article  Google Scholar 

  6. P. MEARES, “Polymers: structure and bulk properties”, (Van Nostrand, London, (1965) p. 237.

    Google Scholar 

  7. M. L. WILLIAMS, R. F. LANDEL and J. D. FERRYJ. Amer. Chem. Soc. 77 (1955) 3701.

    Article  Google Scholar 

  8. J. M. G. COWIE, “Polymers: chemistry and physics of modern materials” (Intertext Books, Aylesbury, UK (1973) 201.

    Google Scholar 

  9. F. BUECHE,J. Chem. Phys. 20 (1952) 1959.

    Article  Google Scholar 

  10. Shell Resins Epikote Technical Manual, E. P. 1. 1. 12, 3rd Edn (Shell, 1987).

  11. H. BATZER and S. A. ZAHIR,J. Appl. Polym. Sci. 19 (1975) 585.

    Article  Google Scholar 

  12. K. RAVINDRANATH, and K. S. GHANDI,ibid. 19 (1979) 1115.

    Article  Google Scholar 

  13. P. J. FLORY,J. Amer. Chem. Soc. 62 (1940) 1057.

    Article  Google Scholar 

  14. J. R. WOOD, and M. G. BADER, Proceedings of the 9th International Conference on Composite Materials Composites: Modelling and Processing Science. (ICCM-9), edited by A. Miraveta (Univ. of Zaragoza and Woodhead, Zaragoza, Spain) Vol. 3 Madrid, 12–16 July (1993) Section 5, p. 567.

    Google Scholar 

  15. J. FRENKEL, “Kinetic theory of liquids” (Oxford University Press, 1946) p. 206 and p. 194.

  16. J. H. HILDEBRAND,J. Amer. Chem. Soc. 38 (1916) 1452.

    Article  Google Scholar 

  17. J. R. WOOD, and M. G. BADER,J. Mater. Sci. 29 (1994) 844.

    Article  Google Scholar 

  18. G. C. PIMENTAL, and A. L. McCLELLAN, “The hydrogen bond” (Freeman, San Francisco, 1960) p. 212.

    Google Scholar 

  19. W. D. KINGERY, H. K. BOWEN, and D. R. UHLMANN, “Introduction to ceramics”, (Wiley, New York, 1976) p. 704.

    Google Scholar 

  20. J. V. ALEMAN,J. Polym. Sci. 18 (Polymer Chemistry Edition), (1980) 2561.

    Google Scholar 

  21. F. W. BILLMEYER, “Textbook of polymer science” (Wiley, New York, 1962) p. 210.

    Google Scholar 

  22. A. K., DOOLITTLE,J. Appl. Phys. 22 (1951) 1471.

    Article  Google Scholar 

  23. P. MEARES,J. Amer. Chem. Soc. 76 (1954) 3415.

    Google Scholar 

  24. W. W. BRANDT,J. Phys. Chem. 63 (1959) 1080.

    Article  Google Scholar 

  25. F. BUECHEJ. Chem. Phys. 20 (1952) 1959.

    Article  Google Scholar 

  26. A. PETERLIN,J. Macromolecular Sci. Phys. B 11 (1975) 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, J.R., Bader, M.G. Modelling the behaviour of gas bubbles in an epoxy resin: Evaluating the input parameters for a diffusion model using a free-volume approach. J Mater Sci 30, 916–922 (1995). https://doi.org/10.1007/BF01178425

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178425

Keywords

Navigation