Skip to main content
Log in

Double torsion fracture testing of high-density polyethylene

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fracture of polyethylene has been studied extensively using conventional testing geometries such as three-point bending (TPB) and single-edge notch tension (SENT). These geometries are of limited utility for studying crack growth, because the crack speed is constantly changing and the crack front is in the centre of the specimen. Double torsion (DT) is a fracture geometry that suffers neither of these disadvantages, yet has only received limited attention in the literature. Its use has been limited to highly brittle materials such as glass, ceramics, thermosetting plastics and PMMA. In contrast to these materials, high-density polyethylene (HDPE) is an inherently ductile polymer. Before the advantages of DT can be exploited for testing HDPE, it is first necessary to demonstrate the validity of DT fracture measurements performed on such a ductile material. In this paper it is shown that at moderate rates of loading and at temperatures below 0‡C, valid double torsion fracture results can be obtained for an ethylene 1-butene copolymer. A novel technique for specimen preparation and a simple method for accurately monitoring crack growth are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. V. Chan and J. G. Williams, Int. J. Fract. 22 (1983) 145.

    Article  Google Scholar 

  2. M. K. V. Chan and J. G. Williams, Polymer 24 (1983) 234.

    Article  CAS  Google Scholar 

  3. X. Lu, X. Wang and N. Brown, J. Mater. Sci. 23 (1988) 643.

    Article  CAS  Google Scholar 

  4. D. Barry and O. Delatycki, J. Polym. Sci. B Polym. Phys. Ed. 25 (1987) 883.

    Article  CAS  Google Scholar 

  5. I. Narisawa, Polym. Eng. Sci. 27 (1987) 41.

    Article  CAS  Google Scholar 

  6. X. Lu and N. Brown, Polymer 28 (1987) 1505.

    Article  CAS  Google Scholar 

  7. D. B. Barry and O. Delatycki, J. Appl. Polym. Sci. 38 (1989) 339.

    Article  CAS  Google Scholar 

  8. N. Brown and S. K. Bhattacharya, J. Mater. Sci. 20 (1985) 4553.

    Article  CAS  Google Scholar 

  9. S. H. Carr, B. Crist and T. J. Marks, Gov. Rep. Announce. Index 85 (1985) 96.

    Google Scholar 

  10. K. Tonyali, C. Rogers and H. R. Brown, J. Macromol. Sci. Phys. B28 (1989) 235.

    Article  Google Scholar 

  11. N. Brown, J. Donofrio and X. Lu, Polymer 28 (1987) 1326.

    Article  CAS  Google Scholar 

  12. M. Flei\ner, Kunststoffe 77 (1987) 1.

    Google Scholar 

  13. D. J. Gerry, PhD thesis, University of Vermont (1966).

  14. J. A. Kies and B. J. Clark, in “Proceedings of the 2nd International Conference on Fracture”, Brighton, April 1969, edited by P. L. Pratt (Chapman and Hall, London, 1969) p. 483.

    Google Scholar 

  15. J.-C. Pollet and S. J. Burns, “Evaluation for ASTM E-24.07.02” (American Society for Testing and Materials, Philadelphia, PA, 1979).

    Google Scholar 

  16. F. P. Champomier, in “Fracture Mechanics Applied to Brittle Materials”, ASTM STP 678, edited by S. W. Freiman (American Society for Testing and Materials, Philadelphia, PA, 1979) p. 60.

    Chapter  Google Scholar 

  17. T. A. Michalske, M. Singh and V. D. Frechette, in “Fracture Mechanics Methods for Ceramics, Rocks, and Concrete”, ASTM STP 745, edited by S. W. Freiman and E. R. Fuller (American Society for Testing and Materials, Philadelphia, PA, 1981) p. 3.

    Chapter  Google Scholar 

  18. J. O. Outwater, M. C. Murphy, R. G. Kumble and J. T. Berry, in “Fracture Toughness and Slow-Stable Cracking”, ASTM STP 559 (Americal Society for Testing and Materials, Philadelphia, PA, 1974) p. 127.

    Book  Google Scholar 

  19. A. G. Evans, M. Linzer and L. R. Russell, Mater. Sci. Eng. 15 (1974) 253.

    Article  Google Scholar 

  20. D. P. Williams and A. G. Evans, J. Test. Eval. 1 (1973) 264.

    Article  CAS  Google Scholar 

  21. A. G. Evans, J. Mater. Sci. 7 (1972) 1137.

    Article  CAS  Google Scholar 

  22. M. Matsui, T. Soma and I. Oda, in “Fracture Mechanics of Ceramics”, Vol. 4, edited by D. Bradt, P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) p. 711.

    Google Scholar 

  23. J. G. Bruce, W. W. Gerberich and B. G. Koepke,, p. 687.

    Google Scholar 

  24. C. G. Annis and J. S. Cargill,, p. 737.

    Google Scholar 

  25. T. Fett, K. Keller and D. Munz, Int. J. Fract. 36 (1988) 3.

    CAS  Google Scholar 

  26. R. J. Young and P. W. R. Beaumont, J. Mater. Sci. 10 (1975) 1343.

    Article  CAS  Google Scholar 

  27. P. S. Leevers, 17 (1982) 2469.

    Article  CAS  Google Scholar 

  28. W.J. Cantwell, A. C. Roulin-Moloney and H. H. Kausch, J. Mater. Sci. Lett. 7 (1988) 976.

    Article  CAS  Google Scholar 

  29. R. J. Young and P. W. R. Beaumont, J. Mater. Sci. 12 (1977) 684.

    Article  CAS  Google Scholar 

  30. B. Stalder and H. H. Kausch, 17 (1982) 2481.

    Article  CAS  Google Scholar 

  31. G. P. Marshall, L. H. Coutts and J. G. Williams, 9 (1974) 1409.

    Article  CAS  Google Scholar 

  32. R. Frassine, T. Riccò, M. Rink and A. Pavan, 23 (1988) 4027.

    Article  CAS  Google Scholar 

  33. P. W. R. Beaumont and R. J. Young, 10 (1975) 1334.

    Article  CAS  Google Scholar 

  34. B. J. Pletka, E. R. Fuller and B. G. Koepke, in “Fracture Mechanics Applied to Brittle Materials”, ASTM STP 678, edited by S. W. Freiman (American Society for Testing and Materials, Philadelphia, PA, 1979) p. 19.

    Chapter  Google Scholar 

  35. P. J. Hine, R. A. Duckett and I. M. Ward, J. Mater. Sci. 19 (1984) 3796.

    Article  CAS  Google Scholar 

  36. P. S. Leevers and J. G. Williams, 22 (1987) 1097.

    Article  Google Scholar 

  37. B. J. Pletka and S. M. Wiederhorn, in “Fracture Mechanics of Ceramics” edited by R. G. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1977) p. 745.

    Google Scholar 

  38. F. E. Bailey and R. Walter, Polym. Eng. Sci. 15 (1975) 842.

    Article  CAS  Google Scholar 

  39. Y. Chaoting, N. H. Ladizesky and I. M. Ward, J. Macromol. Sci. Phys. B27 (1988) 41.

    Article  CAS  Google Scholar 

  40. P. S. Leevers, J. Mater. Sci. Lett. 5 (1986) 191.

    Article  Google Scholar 

  41. S. R. Anthony, J. P. Chubb and J. Congleton, Philos. Mag. 22 (1970) 1201.

    Article  Google Scholar 

  42. A. M. Serrano, G. E. Welsch and R. Gibala, Polym. Eng. Sci. 22 (1982) 934.

    Article  CAS  Google Scholar 

  43. G. G. Trantina, J. Am. Ceram. Soc. 60 (1977) 388.

    Google Scholar 

  44. S. Hashemi and J. G. Williams, Polym. Eng. Sci. 26 (1986) 760.

    Article  CAS  Google Scholar 

  45. J. G. Williams, “Fracture Mechanics of Polymers” (Ellis Horwood, Chichester, 1984).

    Google Scholar 

  46. ASTM E813-81, “Standard Test Method for JIc, A Measure of Fracture Toughness” (American Society for Testing and Materials, Philadelphia, PA).

  47. ASTM E399-83, “Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials”, (American Society for Testing and Materials, Philadelphia, PA).

  48. J. E. Srawley, M. H. Jones and W. F. Brown, Mater. Res. Stand. 7 (1967) 262.

    CAS  Google Scholar 

  49. M. K. V. Chan and J. G. Williams, Polym. Eng. Sci. 21 (1981) 1019.

    Article  CAS  Google Scholar 

  50. T. Riccò, R. Frassine and A. Pavan, J. Mater. Sci. 25 (1990) 1517.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egan, B.J., Delatycki, O. Double torsion fracture testing of high-density polyethylene. JOURNAL OF MATERIALS SCIENCE 29, 6026–6032 (1994). https://doi.org/10.1007/BF00366889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366889

Keywords

Navigation