Skip to main content
Log in

Deposition from the vapour phase during induction plasma treatment of alumina powders

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study was carried out of the induction plasma melting of alumina powders (particle mean diameter, ¯d p=24.5 μm), (Ar/H2 or Ar/N2 plasma, plate power, 40 kW) under reduced pressure conditions (400 torr). The results reveal that in the process, partial vaporization of the alumina powders takes place in the hot region of the discharge. As the molten particles cool down and solidify, the deposits from the vapour phase was formed with the spheroidized particles. In all treatments with the Ar/H2 and Ar/N2 plasmas, a condensate of ultrafine alumina fume (d p<200 nm) was obtained. The fine particles consisted essentially of metastable γ-, δ- and θ-phases. Needle-like crystals(0.1–0.3 μm diameter, by 5–15 μm long) were observed when operating with an Ar/N2 plasma at powder feed rates exceeding 10 g min−1. Electron diffraction analysis revealed that the needles were whiskers, whose structure was very similar to κ- or χ-aluminas with an hexagonal close-packed oxygen lattice. The change of morphology is related to the degree of supersaturation in the vapour phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Ishigaki and M. I. Boulos, Ceram. Trans. 22 (Ceram. Powder Sci. IV), (1991) 139.

    CAS  Google Scholar 

  2. P. Proulx, J. Mostaghimi and M. I. Boulos, Int. J. Heat Mass Transfer 28 (1985) 1327.

    Article  CAS  Google Scholar 

  3. Idem Plasma Chem. Plasma Process. 7 (1987) 29.

    Article  CAS  Google Scholar 

  4. B. Lewis, in “Crystal Growth”, 2nd. Edn edited by B. R. Pamplin (Pergamon Press, Oxford, 1980) p. 23.

    Chapter  Google Scholar 

  5. J. Harvey, H. I. Matthews and H. Wilman, Discuss. Faraday Soc. 30 (1960) 113.

    Article  Google Scholar 

  6. T. I. Barry, R. K. Bayliss and L. A. Lay, J. Mater. Sci. 3 (1968) 229.

    Article  CAS  Google Scholar 

  7. M. Kagawa, F. Honda, H. Onodera and T. Nagae, Mater. Res. Bull. 18 (1983) 1081.

    Article  CAS  Google Scholar 

  8. K. Wafers and G. M. Bell, “Oxides and Hydroxides of Aluminium”, Technical Paper 19 (Alcoa Research Laboratories, Alcoa Center, PA, 1972).

    Google Scholar 

  9. M. Suzuki, M. Kagawa, Y. Syono and T. Hirai, Ceram. Trans. 22 (Ceram. Powder Sci. IV) (1991) 147.

    CAS  Google Scholar 

  10. S. Iijima, Jpn J. Appl. Phys. 23 (1984) L347.

    Article  Google Scholar 

  11. G. Lantagne, B. Marcos and B. Cayrol, Comput. Chem. Eng. 12 (1988) 589.

    Article  CAS  Google Scholar 

  12. J. Lothe and G. M. Pound, in “Nucleation”, edited by A. C. Zettlemoyer, (Marcel Dekker, New York, 1969) p. 109.

    Google Scholar 

  13. R. McPherson, J. Mater. Sci. 8 (1973) 851.

    Article  CAS  Google Scholar 

  14. ASTM Powder Diffraction File, 10-173 (American Society for Testing and Materials, Philadelphia, PA).

  15. H. C. Stumpf, A. S. Russerll, J. W. Newsome and C. M. Tucker, Ind. Eng. Chem. 42 (1950) 1398.

    Article  CAS  Google Scholar 

  16. H. Saalfeld, N. Jb. Miner. Abh. 95 (1960) 1.

    CAS  Google Scholar 

  17. G. W. Brindley and J. O. Choe, Am. Mineral. 46 (1961) 771.

    CAS  Google Scholar 

  18. M. Okumiya, G. Yamaguchi, O. Yamada and S. Ono, Bull. Chem. Soc. Jpn. 44 (1971) 418.

    Article  CAS  Google Scholar 

  19. P. Liu and J. Skogsmo, Acta Crystallogr. B47 (1991) 425.

    Article  CAS  Google Scholar 

  20. G. Yamaguchi, H. Yanagida and S. Ono, Bull. Chem. Soc. Jpn. 37 (1964) 1555.

    Article  CAS  Google Scholar 

  21. G. W. Sears, Acta Metall. 3 (1955) 361.

    Article  CAS  Google Scholar 

  22. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4 (1964) 89.

    Article  CAS  Google Scholar 

  23. R. S. Wagner and R. G. Treuting, J. Appl. Phys. 33 (1961) 2490.

    Article  Google Scholar 

  24. L. E. Murr, in “Electron Optical Applications in Materials Science” (McGraw-Hill, New York, 1970) pp. 254, 293.

    Google Scholar 

  25. P. B. Hirsch, A. Howie, R. B. Nicholson and D. W. Pashley and M. J. Whwlan, in “Electron Microscopy of Thin Crystals” (Butterworths, London, 1965) p. 98.

    Google Scholar 

  26. S. Vuorinen and J. Skogsmo, Thin Solid Films 193/194 (1990) 536.

    Article  Google Scholar 

  27. J. D. Snow and A. H. Heuer, J. Amer. Ceram. Soc. 56 (1973) 154.

    Google Scholar 

  28. R. C. DeVries and G. W. Sears, J. Chem. Phys. 31 (1959) 1256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishigaki, T., Bando, Y., Moriyoshi, Y. et al. Deposition from the vapour phase during induction plasma treatment of alumina powders. JOURNAL OF MATERIALS SCIENCE 28, 4223–4228 (1993). https://doi.org/10.1007/BF00351258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351258

Keywords

Navigation