Skip to main content
Log in

Thermal fatigue in polycrystalline alumina

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Damage accumulation in polycrystalline alumina subjected to cyclic thermal loading was studied via non-destructive elastic modulus and internal friction measurements. These nondestructive techniques were sensitive to cracks formed by thermal loading. Thermal shock damage was observed to saturate as a function of an increasing cumulative number of thermal shock cycles. The observed power law relationship between the damage saturation and thermal shock difference implies a fatigue-like power law relation in stress. The exponent has a value of approximately 12 for the range of ΔT included in this study. Thermal shock damage induced changes in internal friction were found to be a function of a crack damage parameter. These thermal fatigue results of polycrystalline (unreinforced) alumina are also compared to thermal fatigue results for SiC whisker-alumina composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ashizuka, T. E. Easler andR. C. Bradt,J. Amer. Ceram. Soc. 66 (1983) 542.

    Google Scholar 

  2. W. P. Rogers, A. F. Emery, R. C. Bradt andA. S. Kobayashi,ibid. 70 (1987) 406.

    Google Scholar 

  3. H. Ohira andR. C. Bradt,ibid. 71 (1988) 35.

    Google Scholar 

  4. W. J. Lee, MS Thesis, Michigan State University, East Lansing, Michigan (1988).

    Google Scholar 

  5. W. J. Lee andE. D. Case,Mater. Sci. Eng. A119 (1989) 113.

    Google Scholar 

  6. H. M. Chou, PhD Dissertation, Michigan State University, East Lansing, Michigan (1988).

    Google Scholar 

  7. C. E. Semler, Jr., T. H. Hawisher andR. C. Bradt,Amer. Ceram. Soc. Bull. 60 (1981) 724.

    Google Scholar 

  8. K. Matsushida, S. Kuratani, T. Okamoto andM. Shimada,J. Mater. Sci. Lett. 3 (1984) 345.

    Google Scholar 

  9. J. C. Coppola andR. C. Bradt,J. Amer. Ceram. Soc. 56 (1973) 214.

    Google Scholar 

  10. M. J. Reece, F. Guiu andM. F. R. Sammur,ibid.,72 (1989) 348.

    Google Scholar 

  11. T. Hoshide, T. Ohara andT. Yamada,Int. J. Frac. 37 (1988) 47.

    Google Scholar 

  12. A. Grossmuller, V. Zelizko andM. V. Swain,J. Mater. Sci. Lett. 8 (1989) 29.

    Google Scholar 

  13. R. H. Dauskardt, W. Yu andR. O. Ritchie,J. Amer. Ceram. Soc. 70 (1987) C-248–C-252.

    Google Scholar 

  14. K. Kim andA. Mubeen, STP 745 (American Society for Testing and Materials, Philadelphia, 1981) pp. 157–168.

    Google Scholar 

  15. R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials” 2nd edn. (John Wiley, New York, 1983) pp. 521–523.

    Google Scholar 

  16. A. G. Evans andR. M. Cannon,Acta Metall. 34 (1986) 761.

    Google Scholar 

  17. D. B. Marshall, M. D. Drory andA. G. Evans, in “Fracture Mechanics of Ceramics”, Vol. 6, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1983) pp. 289–307.

    Google Scholar 

  18. K. T. Faber andA. G. Evans,Acta Metall. 31 (1983) 565.

    Google Scholar 

  19. Idem, ibid. 31 (1983) 577–584.

    Google Scholar 

  20. P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y-M. Mai andB. J. Hockey,J. Amer. Ceram. Soc. 70 (1987) 279.

    Google Scholar 

  21. J. R. Brockenbrough andS. Suresh,J. Mech. Phys. Solids 35 (1987) 721.

    Google Scholar 

  22. L. Ewart andS. Suresh,J. Mater. Sci. Lett. 5 (1986) 774.

    Google Scholar 

  23. L. Ewart andS. Suresh,J. Mater. Sci. 22 (1987) 1173.

    Google Scholar 

  24. E. K. Tschegg andS. Suresh,ibid. 22 (1987) 2927.

    Google Scholar 

  25. S. Suresh andL. X. Han,J. Amer. Ceram. Soc. 71 (1988) C-158–C-161.

    Google Scholar 

  26. A. A. Morrone, S. R. Nutt andS. Suresh,J. Mater. Sci. 23 (1988) 3206.

    Google Scholar 

  27. S. Suresh andL. A. Sylva,Mater. Sci. Eng. 83 (1986) L7.

    Google Scholar 

  28. F. A. McClintock andJ. B. Walsh, in Proceedings of 4th US National Congress on Applied Mechanics (American Society of Mechanical Engineers, New York, 1962) pp. 1015.

    Google Scholar 

  29. V. Tvergaard andJ. W. Hutchinson,J. Amer. Ceram. Soc. 71 (1988) 157.

    Google Scholar 

  30. R. L. Pullman,AIME 197 (1953) 447.

    Google Scholar 

  31. F. Forster,Z. Metallkunde 29 (1937) 109.

    Google Scholar 

  32. G. Pickett,ASTM Proc. 45 (1945) 846.

    Google Scholar 

  33. D. P. H. Hasselman, “Tables for Computation of Shear Modulus and Young's Modulus of Elasticity from Resonant Frequencies of Rectangular Prisms”, (Carborundum Co., Niagara Falls, New York, 1961).

    Google Scholar 

  34. J. B. Wachtman, Jr. andW. E. Tefft,Rev. Sci. Instrum. 29 (1958) 517.

    Google Scholar 

  35. S. L. Dole, O. Hunter, Jr. andC. J. Wooge,J. Amer. Ceram. Soc. 60 (1977) 488.

    Google Scholar 

  36. D. F. Porter, J. S. Reed andD. Lewis, III,ibid. 60 (1977) 345.

    Google Scholar 

  37. S. L. Dole, O. Hunter, Jr. andF. W. Calderwood,ibid. 60 (1977) 167.

    Google Scholar 

  38. B. R. Powell, Jr., O. Hunter, Jr., andW. R. Manning,ibid. 54 (1971) 488.

    Google Scholar 

  39. V. D. Krstic andW. H. Erickson,J. Mater. Sci. 22 (1987) 2881.

    Google Scholar 

  40. D. Cawley andR. D. Adams, in “Non-Destructive Testing of Fiber Reinforced Plastic Composites”, Vol. 1, edited by J. Summerscales (Elsevier Applied Science, New York, 1987) pp. 151–200.

    Google Scholar 

  41. E. D. Case, J. R. Smyth andO. Hunter, Jr., in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R.C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1983) pp. 507–530.

    Google Scholar 

  42. R. L. Salganik,Mech. Solids 8 (1973) 135.

    Google Scholar 

  43. P. F. Becher, D. Lewis, K. R. Carman andA. C. Gonzalez,Bull. Amer. Ceram. Soc. 59 (1980) S42.

    Google Scholar 

  44. S. S. Manson, “Behaviour of Materials under Conditions of Thermal Stress”, Technical Note 2933, National Advisory Committee for Aeronautics (Lewis Flight Propulsion Laboratory, Cleveland, Ohio, 1953) p. 103.

    Google Scholar 

  45. W. D. Kingery, H. K. Bowen andD. R. Uhlmann, in “Introduction to Ceramics” 2nd edn. (John Wiley, New York, 1976) Chaps 12 and 16.

    Google Scholar 

  46. T. N. Tiegs andP. F. Becher,J. Amer. Ceram. Soc. 70 (1987) C-109–C-111.

    Google Scholar 

  47. G. Simmons andH. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook” (MIT Press, Cambridge, MA, 1971).

    Google Scholar 

  48. M. O. Marlowe, MS Thesis, Iowa State University, Ames, Iowa (1963).

    Google Scholar 

  49. R. Hanna andW. B. Crandall, “The Young's Modulus and Internal Friction of Polycrystalline MgO at Room Temperature”, U.S. Atomic Energy Commission Report AROD-2891.1 (Army Research Office, Durham, North Carolina, 1961).

    Google Scholar 

  50. C. Zener, “Elasticity and Anelasticity of Metals” (University of Chicago Press, Chicago, 1948).

    Google Scholar 

  51. T. S. Ke,Phys. Rev. 74 (1948) 914.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W.J., Case, E.D. Thermal fatigue in polycrystalline alumina. J Mater Sci 25, 5043–5054 (1990). https://doi.org/10.1007/BF00580128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00580128

Keywords

Navigation