Skip to main content
Log in

Tensile strength of composites with brittle reaction zones at interfaces

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A theoretical model of the longitudinal strength of brittle fibre-reinforced composites with brittle reaction zones was presented for both cases of strongly and weakly bonded fibre/brittle zone interfaces. First, on the basis of the fracture mechanics, a model of the strength of the fibres coated with strongly adhering brittle zones was proposed as a function of the thickness of the brittle zones. Next, the conditions under which debonding occurs at the interfaces were investigated with the aid of the shear lag analysis proposed by Cox. The theoretical model was then examined using composites with strongly and weakly bonded interfaces. The proposed model agreed fairly well with the experimental results. Finally, the permissible thickness of the brittle zone below which no reduction in fibre strength appears was calculated, using the proposed theory, under the condition of strong interfacial bonding, for carbon, boron and silicon carbide fibres which are of practical use. The calculated values of the thickness were smaller than 1 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Petrasek and J. W. Weeton, Trans. Met. Soc. AIME 230 (1964) 977.

    Google Scholar 

  2. P. W. Heitman, L. A. Shepard and T. H. Courtney, J. Mech. Phys. Solids 21 (1973) 75.

    Google Scholar 

  3. S. Ochiai, M. Mizuhara and Y. Murakami, J. Jap. Inst. Metals 37 (1973) 208.

    Google Scholar 

  4. A. G. Metcalfe and M. J. Klein, “Composite Materials”, Vol. 1, edited by A. G. Metcalfe (Academic Press, New York and London, 1974) p. 125.

    Google Scholar 

  5. J. Cook and J. E. Gorden, Proc. Roy. Soc. 282A (1964) 508.

    Google Scholar 

  6. G. A. Cooper and A. Kelly, J. Mech. Phys. Solids 15 (1967) 279.

    Google Scholar 

  7. W. W. Gerberich, ibid 19 (1971) 71.

    Google Scholar 

  8. S. Ochiai and Y. Murakami, Trans. Jap. Inst. Metals 18 (1977) 384.

    Google Scholar 

  9. S. Ochiai, M. Mizuhara and Y. Murakami, J. Jap. Inst. Metals 41 (1977) 626.

    Google Scholar 

  10. H. Tada, P. Paris and G. Irwin, “The Stress Analysis of Cracks Handbook” (Del Research Corporation, Hellertown, Pennsylvania, 1973) p. 27.1.

    Google Scholar 

  11. Idem, ibid p. 1.12.

    Google Scholar 

  12. H. L. Cox, Brit. J. Appl. Phys. 3 (1953) 72.

    Google Scholar 

  13. J. Aveston and A. Kelly, J. Mater. Sci. 8 (1973) 352.

    Google Scholar 

  14. H. M. Otte and H. A. Lipsitt, Phys. Stat. Sol. 13 (1966) 439.

    Google Scholar 

  15. C. J. Smithells, “Metals Reference Book”, Vol. 3 (Butterworth, London, 1967) p. 708.

    Google Scholar 

  16. A. Kelly, Proc. Roy. Soc. 282A (1964) 63.

    Google Scholar 

  17. A. S. Tetelman and A. J. McEvily, Jr, “Fracture of Structural Materials” (J. Wiley, New York, 1967) p. 38.

    Google Scholar 

  18. J. R. McLaven, G. Tappin and R. W. Davidge, Proc. Brit. Ceram. Soc. 22 (1972) 259.

    Google Scholar 

  19. B. E. Bacon, Acta Cryst. 3 (1950) 320.

    Google Scholar 

  20. A. K. Kurakin, Fiz. Metal. Metalloved. 30 (1970) 432.

    Google Scholar 

  21. J. L. Camahort, J. Comp. Mater. 2 (1968) 104.

    Google Scholar 

  22. W. F. Stuhrke, “Metal Matrix Composites” (ASTM, Baltimore, 1968) p. 76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochiai, S., Murakami, Y. Tensile strength of composites with brittle reaction zones at interfaces. J Mater Sci 14, 831–840 (1979). https://doi.org/10.1007/BF00550714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550714

Keywords

Navigation