Skip to main content
Log in

Prediction of Complexation Properties of Crown Ethers Using Computational Neural Networks

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

A computational neural network method was used for the prediction of stability constants of simple crown ether complexes. The essence of the method lies in the ability of a computer neural network to recognize the structure-property relationships in these host-guest systems. Testing of the computational method has demonstrated that stability constants of alkali metal cation (Na+, K+, Cs+)-crown ether complexes in methanol at 25 °C can be predicted with an average error of ±0.3 log K units based on the chemical structure of the crown ethers alone. The computer model was then used for the preliminary analysis of trends in the stabilities of the above complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zupan and J. Gasteiger: Anal. Chim. Acta 248, 1 (1991).

    Google Scholar 

  2. G. M. Maggiora, D. W. Elrod, and R. G. Trenary: J. Chem. Inf. Comput. Sci. 32, 732 (1992).

    Google Scholar 

  3. J. Gasteiger and J. Zupan: Angew. Chem. Int. Ed. Engl. 32, 503 (1993).

    Google Scholar 

  4. B. G. Sumpter, C. Getino, and D. W. Noid: Annu. Rev. Phys. Chem. 45, 439 (1994).

    Google Scholar 

  5. N. Bodor, A. Harget, and M-J. Huang: J. Am. Chem. Soc. 113, 9480 (1991).

    Google Scholar 

  6. L. M. Egolf and P. C. Jurs: J. Chem. Inf. Comput. Sci.33 616 (1993), and references therein.

    Google Scholar 

  7. A. A. Gakh, E. G. Gakh, B. G. Sumpter, and D. W. Noid: J. Chem. Inf. Comput. Sci. 34, 832 (1994).

    Google Scholar 

  8. A. A. Gakh, E. G. Gakh, B. G. Sumpter, D. W. Noid, L. D. Trowbridge, and D. A. Harkins: J. Fluorine Chem. 73, 107 (1995).

    Google Scholar 

  9. B. G. Sumpter and D. W. Noid: Macromol. Theory Simul. 3, 363, (1994).

    Google Scholar 

  10. J.-M. Lehn: Angew. Chem. Int. Ed. Engl. 27, 89 (1988).

    Google Scholar 

  11. M. H. Mazor, J. A. McCammon, and T. P. Lybrand: J. Am. Chem. Soc. 111, 55 (1989).

    Google Scholar 

  12. P. D. J. Grootenhius and P. A. Kollman: J. Am. Chem. Soc. 111, 4046 (1989).

    Google Scholar 

  13. P. D. J. Grootenhius, J. van Eerden, E. J. R. Sudholter, D. N. Reinhoudt, A. Roos, S. Harkema, and D. Feil: J. Am. Chem. Soc. 109, 4792 (1987).

    Google Scholar 

  14. M. A. Thompson, E. D. Glendening, and D. Feller: J. Phys. Chem. 98, 10465 (1994).

    Google Scholar 

  15. B. P. Hay, J. R. Rustad, and C. J. Hostetler: J. Am. Chem. Soc. 115, 11158 (1993).

    Google Scholar 

  16. M. J. Kamlet, R. M. Doherty, M. H. Abraham, Y. Marcus, and R. W. Taft: J. Phys. Chem. 92, 5244 (1988).

    Google Scholar 

  17. Z.-G. Shi and E. A. McCullough, Jr.: J. Incl. Phenom. 18, 9 (1994).

    Google Scholar 

  18. R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, and J. J. Christensen: Chem. Rev. 85, 271 (1985).

    Google Scholar 

  19. R. M. Izatt, K. Pawlak, J. S. Bradshaw, and R. L. Bruening: Chem. Rev. 91, 1721 (1991).

    Google Scholar 

  20. Our preliminary computations indicate that the influence of temperature and solvent can be incorporated in neural network computing by adding two additional inputs (temperature and solvent) in the neural network architecture. For a limited set of solvents (for example, methanol, acetonitrile, water) they can be coded sequentially, 1, 2, and 3. However, for a large set of solvents a more sophisticated coding algorithm is required. These computations lie beyond the scope of the current work.

  21. Neural network computational packages (NeuralWorks Professional II/PLUS and NeuralWorks Explorer) are commercially available from NeuralWare, Inc. (Penn Center West, Building IV Pittsburgh, PA 15276–9910) both for PC and mainframe computers. In this study we have used backpropagation-type neural networks included in this program package. For more details of neural network computing see, for example [1–4, 7], and references therein.

  22. R. L. Bruening, R. M. Izatt, and J. S. Bradshaw: Understanding Cation-Macrocycle Binding Selectivity in Single-Solvent, Extraction and Liquid Membrane Systems by Quantifying Thermodynamic Interactions(Cation Binding by Macrocycles: Complexation of Cationic Species by Crown Ethers, Eds. Y. Inoue and G. W. Gokel), pp 111–132. Marcel Dekker, New York, NY (1990).

    Google Scholar 

  23. B. P. Hay and J. R. Rustad: J. Am. Chem. Soc. 116, 6316 (1994).

    Google Scholar 

  24. R. D. Hancock: Pure Appl. Chem. 58, 1445 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gakh, A.A., Sumpter, B.G., Noid, D.W. et al. Prediction of Complexation Properties of Crown Ethers Using Computational Neural Networks. Journal of Inclusion Phenomena 27, 201–213 (1997). https://doi.org/10.1023/A:1007928814162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007928814162

Navigation