Skip to main content
Log in

Theoretical am1 studies of inclusion complexes of α- and β-cyclodextrins with methylated benzoic acids and phenol, and γ-cyclodextrin with buckminsterfullerene

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

Semiempirical AM1 calculations have been performed on the inclusion complexes of α- and β-cyclodextrin with benzoic acid and phenol and β-cyclodextrin with methylated benzoic acids in the “head first” and “tail first” positions. The results show that α-cyclodextrin complexes with phenol and benzoic acid guests in the “head first” position are more stable than in the “tail first” position, while β-cyclodextrin complexes with the same guests prefer the “tail first” position. The preferred orientation for β-cyclodextrin with methylated benzoic acids is determined by the position of the methyl substituent(s). In general, para-methyl benzoic acid derivatives prefer the “tail first” position. γ-cyclodextrin forms a slightly unstable 1:1 complex with C60 (3.4 kcal/mol), but two γ-cyclodextrins provide enough stabilization by about 10 kcal/mol to “cage-in” the C60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. P., AM1: A New General Purpose Quantum Mechanical Molecular Model1,J. Am. Chem. Soc.,107, 3902–3909 (1985)

    Google Scholar 

  2. Bodor, N. S., Huang, M.-J., Watts, J. D., Theoretical Studies on the Structures of Natural and Alkylated CyclodextrinsJ. Pharm. Sci.,84, 330–336 (1995)

    Google Scholar 

  3. Bodor, N. S., Huang, M.-J., An Extended Version of a Novel Method for the Estimation of Partition Coefficients,J. Pharm. Sci.,81, 272–281 (1992)

    Google Scholar 

  4. Jeffrey, G. A., Saenger, W., Hydrogen Bonding in Biological Structures, Springer Verlag, Berlin, 1991

    Google Scholar 

  5. Steiner, Th., Saenger, W., Geometric Analysis of Non-Ionic O-H...O Hydrogen Bonds and Non-Bonding Arrangements in Neutron Diffraction Studies of Carbohydrates,Acta Crystallogr., Sect. B,48, 819-827 (1992)

    Google Scholar 

  6. Steiner, Th., Saenger, W., Role of C-H...O Hydrogen Bonds in the Coordination of Water Molecules. Analysis of Neutron Diffraction Data,J. Am. Chem. Soc.,115, 4540–4547 (1993)

    Google Scholar 

  7. Steiner, Th., Saenger, W., Reliability of assigning O-H...O hydrogen bonds to short intermolecular O...O separations in cyclodextrin and oligosaccharide crystal structures,Carbohydr. Res.,259, 1–12 (1994)

    Google Scholar 

  8. Kitagawa, M., Hoshi, H., Sakurai, M., Inoue, Y., Chujo, R., The large dipole moment of cyclomaltohexaose and its role in determining the guest orientation in inclusion complexes,Carbohydr. Res.,163, C1-C3 (1987)

    Google Scholar 

  9. Sakurai, M., Kitagawa, M., Hoshi, H., CNDO-Electrostatic Potential Maps for α-Cyclodextrin,Chem. Lett., 895–898 (1988)

  10. Kitagawa, M., Hoshi, H., Sakurai, M., Inoue, Y., Chujo, R., A Molecular Orbital Study of Cyclodextrin Inclusion Complexes. I. The Calculation of the Dipole Moments of α-Cyclodextrin-Aromatic Guest Complexes,Bull. Chem. Soc. Jpn.,61, 4225–4229 (1988)

    Google Scholar 

  11. Sakurai, M., Kitagawa, M., Hoshi, H., Inoue, Y., Chujo, R., A Molecular Orbital Study of Cyclodextrin Inclusion Complexes. II. The Structure Analysis of α-Cyclodextrin Inclusion Complex with m-Nitrophenol in Aqueous Solution Based on the Quantum-Chemical Solvation Theory,Bull. Chem. Soc. Jpn.,62, 2067–2069 (1989)

    Google Scholar 

  12. Andersson, T., Nilsson, K., Sundahl, M., Westman, G., Wennerström, O., C60 Embedded in γ-Cyclodextrin: a Water-soluble Fullerene,J. Chem. Soc. Chem. Commun., 604–606 (1992)

  13. Andersson, T., Westman, G., Wennerström, O., Sundahl, M., NMR and UV-VIS Investigation of Water-soluble Fullerene-60-γ-Cyclodextrin Complex,J. Chem. Soc. Perkin Trans.,2, 1097–1101 (1994)

    Google Scholar 

  14. Priyadarsini, K. I., Mohan, H., Mittal, J. P.Guldi, D. M., Asmus, K.-D., Pulse Radiolysis Studies on the Redox Reactions of Aqueous Solutions of γ-Cyclodextrin/C60 Complexes,J. Phys. Chem.,98, 9565–9569 (1994)

    Google Scholar 

  15. Boulas, P. Kutner, W., Jones, M. T., Kadish, K. M., Bucky(basket)ball: Stabilization of Electrogenerated C60 Radical Monoanion in Water by Means of Cyclodextrin Inclusion Chemistry,J. Phys. Chem.,98, 1282–1287 (1994)

    Google Scholar 

  16. Yoshida, Z.-i., Takekuma, H., Takekuma, S.-i., Matsubara Y.,Angew. Chem. Int. Ed. Engl.,33, 1597–1599 (1994)

    Google Scholar 

  17. Priyadarsini, K. I., Mohan, H. Tyagi, A. K., Mittal, J. P., Inclusion Complex od γ-Cyclodextrin-C60: Formation, Characterization, and Photophysical Properties in Aqueous Solutions,J. Phys. Chem.,98, 4756–4759 (1994)

    Google Scholar 

  18. Kuroda, Y., Nozawa, H., Ogoshi, H., Kinetic Behaviors of Solubilization of C60 into Water by Complexation with γ-Cyclodextrin,Chemistry Letters, 47–48 (1995)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodor, N., Huang, MJ. & Watts, J.D. Theoretical am1 studies of inclusion complexes of α- and β-cyclodextrins with methylated benzoic acids and phenol, and γ-cyclodextrin with buckminsterfullerene. J Incl Phenom Macrocycl Chem 25, 97–102 (1996). https://doi.org/10.1007/BF01041545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041545

Keywords

Navigation