Skip to main content
Log in

Computational prediction of trends in the selectivity of macrocyclic receptors for anions

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

We seek a theoretical method which is capable of predicting trends in the binding affinity of macrocyclic receptors for various anions in aqueous solution. Success has been achieved in this endeavor by employing semiempirical methodology to compute the energetics of certain exchange reactions whereby anions are exchanged between a macrocyclic receptor and a cluster of water molecules. The method is computationally tractable with workstation-class computing hardware and is applicable to a wide range of guest/host systems. Computations for several anion/receptor systems are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.M. Izatt, J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, J.J. Christensen, and D. Sen:Chem. Rev. 85, 271 (1985).

    Google Scholar 

  2. J.S. Bradshaw, R.M. Izatt, R.L. Bruening, and J.J. Christensen:U.S. Patent 4,943,375 (Jul. 24, 1990).

    Google Scholar 

  3. R.M. Izatt, K. Pawlak, J.S. Bradshaw, and R.L. Bruening:Chem. Rev. 91, 1721 (1991).

    Google Scholar 

  4. C.J. Pedersen:J. Am. Chem. Soc. 89, 7017 (1967).

    Google Scholar 

  5. C.H. Park and H.E. Simmons:J. Am. Chem. Soc. 90, 2431 (1968).

    Google Scholar 

  6. X. Yang, C.B. Knobler, Z. Zheng, and M.F. Hawthorne:J. Am. Chem. Soc. 116, 7142 (1994).

    Google Scholar 

  7. D.E. Kaufmann and A. Otten:Angew. Chem. Int. Ed. Engl. 33, 1832 (1994).

    Google Scholar 

  8. T.P. Lybrand, J.A. McCammon, and G. Wipff:Proc. Natl. Acad. Sci. U.S.A. 83, 833 (1986).

    Google Scholar 

  9. B. Owenson, R.D. Macelroy, and A. Pohorille:J. Mol. Struct. THEOCHEM 179, 467 (1988).

    Google Scholar 

  10. B. Owenson, R.D. Macelroy, and A. Pohorille:J. Am. Chem. Soc. 110, 6992 (1988).

    Google Scholar 

  11. G. Wipff and J.-M. Wurtz:New J. Chem. 13, 807 (1989).

    Google Scholar 

  12. S. Jacobson and R. Pizer:J. Am. Chem. Soc. 115, 11216 (1993).

    Google Scholar 

  13. R.B. Shirts and L.D. Stolworthy:J. Incl. Phenom. 20, 297 (1995).

    Google Scholar 

  14. A.K. Rappe and W.A. Goddard:J. Phys. Chem. 95, 3358 (1991).

    Google Scholar 

  15. Z. Su:J. Comput. Chem. 14, 1036 (1993).

    Google Scholar 

  16. L. von Szentpály and I.L. Shamovsky:J. Molec. Struct. THEOCHEM 305, 249 (1994).

    Google Scholar 

  17. U. Sternberg, F.T. Koch, and M. Möllhoff:J. Comput. Chem. 15, 524 (1994).

    Google Scholar 

  18. D.B. Kireev, V.I. Fetisov, and N.S. Zefirov:J. Mol. Struct. THEOCHEM 304, 143 (1994).

    Google Scholar 

  19. G. Wipff, P. Weiner, and P. Kollman:J. Am. Chem. Soc. 104, 3249 (1982).

    Google Scholar 

  20. M.A. Thompson, E.D. Glendening, and D. Feller:J. Phys. Chem. 98, 10465 (1994).

    Google Scholar 

  21. B.P. Hay, J.R. Rustad, and C.J. Hostetler:J. Am. Chem. Soc. 115, 11158 (1993).

    Google Scholar 

  22. B.P. Hay and J.R. Rustad:J. Am. Chem. Soc. 116, 6316 (1994).

    Google Scholar 

  23. R.D. Hancock:Acc. Chem. Res. 23, 253 (1990).

    Google Scholar 

  24. E. Graf and J-M. Lehn:J. Am. Chem. Soc. 98, 6403 (1976).

    Google Scholar 

  25. A. Pullman, C. Giessner-Prettre, and Y.V. Kruglyak:Chem. Phys. Lett. 35, 156 (1975).

    Google Scholar 

  26. E.D. Glendening, D. Feller, and M.A. Thompson:J. Am. Chem. Soc. 116, 10657 (1994).

    Google Scholar 

  27. A.R. Katritzky, N. Malhotra, R. Ramanathan, R.C. Kemerait, Jr., J.A. Zirmnerman, and J.R. Eyler:Rapid Commun. Mass Spectrosc. 6, 25 (1992).

    Google Scholar 

  28. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart:J. Am. Chem. Soc. 107, 3902 (1985).

    Google Scholar 

  29. T. Yamabe, K. Hori, K. Akagi, and K. Fukui:Tetrahedron 35, 1065 (1979)

    Google Scholar 

  30. K. Hori, H. Yamada, and T. Yamabe:Tetrahedron 39, 67 (1983).

    Google Scholar 

  31. I.N. Levine:Quantum Chemistry, Prentice Hall, Englewood Cliffs, NJ, Ch. 17 (1991).

    Google Scholar 

  32. ZINDO, J. Ridley and M. Zerner:Theoret. Chim. Acta 32, 111 (1973). J. Ridley and M. Zerner:Theoret. Chim. Acta 42, 223 (1976), as implemented in the CAChe Worksystem, CAChe Scientific, Inc. Beaverton, OR, U.S.A.

    Google Scholar 

  33. Z. Zheng, C.B. Knobler, C.E. Curtis, and M.F. Hawthorne:Inorg. Chem. 34, 432 (1995).

    Google Scholar 

  34. K. Worm, F.P. Schmidtchen, A. Schier, A. Schäfer, and M. Hesse:Angew. Chem. Int. Ed. Engl. 33, 327 (1994).

    Google Scholar 

  35. F.P. Schmidtchen:Angew. Chem. Int. Ed. Engl. 16, 720 (1977).

    Google Scholar 

  36. E. Graf and J-M. Lehn:J. Am. Chem. Soc. 97, 5022 (1975).

    Google Scholar 

  37. S.D. Reilly, G.R.K. Khalsa, D.K. Ford, J.R. Brainard, B.P. Hay, and P.H. Smith:Inorg. Chem. 34, 569 (1995).

    Google Scholar 

  38. E.D. Glendening and D. Feller:J. Phys. Chem. 99, 3060 (1995).

    Google Scholar 

  39. Editor V3.6, a part of the functionality of the CAChe Worksystem, CAChe Scientific, Inc. Beaverton, OR. U.S.A.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohlberg, K., Tarbet, B.J. Computational prediction of trends in the selectivity of macrocyclic receptors for anions. J Incl Phenom Macrocycl Chem 23, 203–212 (1995). https://doi.org/10.1007/BF00709578

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709578

Key words

Navigation