Skip to main content
Log in

The structural and electronical factors that contribute affinity for the time-dependent inhibition of PGHS-1 by indomethacin, diclofenac and fenamates

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

PGHS-1 and PGHS-2 are the targets of nonsteroidal anti- inflammatory drugs (NSAIDs). It appears that the high degree of selectivity for inhibition of PGHS-2 shown by certain compounds is the result of two mechanisms (time-dependent and time-independent inhibition), by which they interact with each isoform. The fenamic acids can be divided into competitive inhibitors of substrate binding and competitive inhibitors that cause time-dependent losses of cyclooxygenase activity. The cyclooxygenase activity was measured by oxygen consumption following preincubation of the enzyme and the inhibitor for increasing periods of time. The rate constants associated with binding inhibition kinetics and structure-activity relationships were calculated for a large number of fenamates, diclofenac and indomethacin. The KI* values are similar but the individual rate constants are markedly different: KI is two-fold lower, and k2 is six-fold slower for diclofenac than for indomethacin. All the active time-dependent compounds show MEPs with a negative conical surface, with their vertex on the minimum of the carboxyl group, which extends around the first aromatic ring to the central region. The conical surface keeps an open angle of 61° or larger, and a close contact surface with the residues Ala527, Ileu523, Val349, and Ser530, in the zones surrounding the bridging amino group and the chlorine atoms for meclofenamate and diclofenac, or in the region around the carbonyl group for indomethacin. The KI* and IC50 values indicate that the interactions that promote the slow binding kinetics must be examined in relation to the reaction energies of formation (ΔHr) of an ionic bond between the deprotonated carboxylic acid group of acid NSAIDs with the monocationic guanidinum group of Arg120, the free energies of solvation in aqueous solution, and the molecular volumes measured. Presumably indomethacin, diclofenac and meclofenamate cause the enzyme to undergo a subtle conformational change to a form that binds compounds even more tightly, with some slight structural changes confined to reorientations of the Arg277 and Gln358 side chains. These results show that the model has reliably chosen regions of biological significance consistent with both the X-ray crystallographic and kinetic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Earnest, D.L., Hixson, L.J. and Alberts, D.S., J. Cell. Biochem. Suppl., 161 (1992) 156.

    Google Scholar 

  2. Kargman, S.L., O'Neill, G.P., Vickers, P.J., Evans, J.F., Mancini, J.A. and Jothy, S., Cancer Res., 55 (1995) 2556.

    Google Scholar 

  3. Smith, W.L., Marnett, L.J. and DeWitt, D.L., In Taylor, C.W. (Ed.) Pharmacological Therapy, Vol. 49, Pergamon Press, London, 1991, pp. 153–179.

    Google Scholar 

  4. Lecomte, M., Laneuville, O., Ji, C., DeWitt, D.L. and Smith, W.L., J. Biol. Chem., 269 (1994) 13207.

    Google Scholar 

  5. Kulmacz, R.J. and Wang, L.-H., J. Biol. Chem., 270 (1995) 24019.

    Google Scholar 

  6. Barnett, J., Chow, J., Ives, D., Chiou, M., Mackenzie, R., Osen, E., Nguyen, B., Tsing, S., Bach, C., Freire, J., Chan, H., Sigal, E. and Ramesha, C., Biochim. Biophys. Acta, 1209 (1994) 130.

    Google Scholar 

  7. Ouellet, M. and Percival, D., Biochem. J., 306 (1995) 247.

    Google Scholar 

  8. Scherrer, A., In Rainsford, K.D. and Path, M.R.C. (Eds.) Anti-Inflammatory and Anti-Rheumatic Drugs, Vol. 2, CRC Press, Boca Raton, FL, 1985, pp. 65–85.

    Google Scholar 

  9. Picot, D., Loll, P.J. and Garavito, R.M., Nature, 367 (1994) 243.

    Google Scholar 

  10. Loll, P.J., Picot, D. and Garavito, R.M., Nature Struct. Biol., 2 (1995) 637.

    Google Scholar 

  11. Loll, P.J., Picot, D., Ekabo, O. and Garavito, R.M., Biochemistry, 35 (1996) 7330.

    Google Scholar 

  12. Kulmacz, R.J. and Lands, W.E.M., In Benedetto, C., Mc-Donald Gibson, R.G., Nigam, S. and Slater, T.F. (Eds.), Prostaglandin and Related Substances: A Practical Approach, IRL Press, Washington, DC, 1987, pp. 209–227.

    Google Scholar 

  13. Watnick, A.S., Taber, R.I. and Tabachnick, I.A., Arch. Int. Pharmacodyn., 190 (1971) 78.

    Google Scholar 

  14. Callan, O.H., On-Yee, S. and Swinney, D.C., J. Biol. Chem., 271 (1996) 3548.

    Google Scholar 

  15. Lozano, J.J., Pouplana, R., López, M. and Ruiz, J., J. Mol. Struct. (Theochem), 335 (1995) 215.

    Google Scholar 

  16. Moser, P., Sallmann, A. and Wiesenberg, I., J. Med. Chem., 33 (1990) 2358.

    Google Scholar 

  17. Dhanaraj, V. and Vijayan, M., Acta Crystallogr., B44 (1988) 406.

    Google Scholar 

  18. Biosym Technologies, Inc., San Diego, CA.

  19. Kollman, P.A., J. Comput. Chem., 11 (1990) 431.

    Google Scholar 

  20. AMSOL 5.4.1., Oxford Molecular Group.

  21. Frisch, M.J., Head-Gordon, M., Trucks, G.W., Foresman, J.B., Schlegel, H.B., Raghavachari, K., Robb, M.A., Binkley, J.S., Gonzalez, C., Defrees, D.J., Fox, D.J., Whiteside, R.A., Seeger, R., Melius, C.F., Baker, J., Martin, R.L., Kahn, L.R., Stewart, J.J.P., Topiol, S. and Pople, J.A., Gaussian 92, Gaussian Inc., Pittsburgh, PA, 1992.

    Google Scholar 

  22. Sanz, F., Manaut, F., Segura, J.J., Carbó, M. and De la Torre, R., J. Mol. Struct. (Theochem), 170 (1988) 171.

    Google Scholar 

  23. Sobolev, V., Wade, R.C., Vriend, G. and Edelman, M., Proteins Struct. Funct. Genet., 25 (1996) 120.

    Google Scholar 

  24. GRID v.15, Molecular Discovery Ltd., Elms Parade, Oxford, 1997.

  25. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  26. Kulmacz, R.J., Pendleton, R.B. and Lands, W.E.M., J. Biol. Chem., 269 (1994) 5527.

    Google Scholar 

  27. Ferenczy, G.G., Reynolds, C.A. and Richards, W.G., J. Comput. Chem., 11 (1990) 159.

    Google Scholar 

  28. Lozano, J.J., López, M., Ruiz, J., Vazquez, I.J. and Pouplana, R., In Wermuth, C.G. (Ed.) Trends in QSAR and Molecular Modelling'92, ESCOM, Leiden, 1993, pp. 560–562.

    Google Scholar 

  29. Bhattacharyya, D.K., Lecomte, M., Rieke, C.J., Garavito, M. and Smith, W.L., J. Biol. Chem., 271 (1996) 2179.

    Google Scholar 

  30. Mancini, J.A., Riendeau, D., Falgueyret, J.P., Vickers, P.J. and O'Neill, G.P., J. Biol. Chem., 270 (1995) 29372.

    Google Scholar 

  31. Kulmacz, R.J., Palmer, G. and Ah-Lim, T., Mol. Pharm., 40 (1991) 833.

    Google Scholar 

  32. Ah-Lim, T., Kulmacz, R.J. and Palmer, G., J. Biol. Chem., 270 (1995) 10503.

    Google Scholar 

  33. Ruiz, J., López, M., Milà, J., Lozoya, E., Lozano, J.J. and Pouplana, R., J. Comput.-Aided Mol. Design, 7 (1993) 183.

    Google Scholar 

  34. López, M., Lozoya, E., Ruiz, J., Milà, J. and Pouplana, R.A., In Silippo, C. and Vittoria, A. (Eds.) QSAR: Rational Approaches to the Design of Bioactive Compounds, Elsevier, Amsterdam, 1991, pp. 315–318.

    Google Scholar 

  35. Mitchell, J.A., Akarasereenont, P., Thiemermann, C., Flower, R.J. and Vane, J.R., Proc. Natl. Acad. Sci. USA, 90 (1994) 11693.

    Google Scholar 

  36. Meade, E.A., Smith, W.L. and DeWitt, D.L., J. Biol. Chem., 268 (1993) 6610.

    Google Scholar 

  37. Kurumbail, R.G., Stevens, A.M., Gierse, J.K., McDonald, J.J., Stegeman, R.A., Pak, J.Y., Gildehaus, D., Miyashiro, J.M., Penning, T.D., Seibert, K., Isakson, P.C. and Stallings, W.C., Nature, 384 (1996) 644.

    Google Scholar 

  38. Kulmacz, R.J. and Lands, W.E.M., J. Biol. Chem., 260 (1985) 12572.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouplana, R., Pérez, C., Sánchez, J. et al. The structural and electronical factors that contribute affinity for the time-dependent inhibition of PGHS-1 by indomethacin, diclofenac and fenamates. J Comput Aided Mol Des 13, 297–313 (1999). https://doi.org/10.1023/A:1008094616324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008094616324

Navigation