Skip to main content
Log in

Distance geometry analysis of ligand binding to drug receptor sites

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The method known as ‘distance geometry approach’ for receptor mapping procedures is discussed. In this method a ligand binding to a certain receptor is considered as a collection of ligand points. Binding sites of the receptor are either ‘empty’ or ‘filled’ site points; a ligand point might bind to an empty site point; filled site points indicate that at that point no binding is possible. A binding mode of a ligand is a list of which ligand points coincide with which empty binding sites. The applicability of the method for QSAR studies is discussed; as examples are mentioned the dihydrofolate reductase, β1- and β2-receptors. Finally, some ideas on future developments in receptor mapping are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hansch, C. and Fujita, T.J., J. Am. Chem. Soc., 86 (1964) 1616–1626.

    Google Scholar 

  2. Hansch, C., Unger, S.H. and Forsythe, A.B., J. Med. Chem., 16 (1973) 1217–1222.

    Google Scholar 

  3. Hansch, C. and Leo, A., Substituent Constants for Correlation Analysis in Chemistry and Bilogy, Wiley, New York, 1979.

    Google Scholar 

  4. Hansch, C., J. Med. Chem., 19 (1976) 1–6.

    Google Scholar 

  5. Hansch, C., Fukunaga, J.Y., Jow, P.Y.C. and Hynes, J.B., J. Med. Chem., 20 (1976) 96–102.

    Google Scholar 

  6. Dunn, W.J., III and Wold, S.J., J. Med. Chem., 21 (1978) 1001–1007.

    Google Scholar 

  7. Dunn, W.J., III, Wold, S.J. and Stalling, D.L., ACS Symposium Series 292, American Chemical Society, 1985, 2435–2439.

  8. Franke, R., Dove, S. and Kuhne, R., Eur. J. Med. Chem., 14 (1979) 363–374.

    Google Scholar 

  9. Cammarate, A. and Menon, G.K., J. Med. Chem., 19 (1976) 739–748.

    Google Scholar 

  10. Hyde, R. and Lord, E., Eur. J. Med. Chem., 14 (1979) 199–206.

    Google Scholar 

  11. Kirschner, G. and Kowalski, B.R., Drug Design, 8 (1979) 73–79.

    Google Scholar 

  12. Jurs, P.C., Stouch, T.R., Czerwinski, M. and Narvaez, J.N., J. Chem. Inf. Comput. Sci., 25 (1985) 296–302.

    Google Scholar 

  13. Moriguchi, L., Komatsu, K. and Matsushi, Y., J. Med. Chem., 23 (1980) 20–26.

    Google Scholar 

  14. Crippen, G.M. and Havel, T.F., Acta. Crystallogr., Sect. A 34 (1978) 282–284.

    Google Scholar 

  15. Crippen, G.M., J. Med. Chem., 22 (1979) 988–997.

    Google Scholar 

  16. Crippen, G.M., J. Med. Chem., 23 (1980) 599–606.

    Google Scholar 

  17. Crippen, G.M., J. Med. Chem., 24 (1981) 198–203.

    Google Scholar 

  18. Linschoten, M.R., Bultsma, T., IJzerman, A.P. and Timmerman, H., J. Med. Chem., 29 (1986) 278–286.

    Google Scholar 

  19. Donné-Op den Kelder, G.M., Bijloo, G.J. and Bultsma, T., Eur. J. Med. Chem., 21 (1986) 475–485.

    Google Scholar 

  20. Donné-Op den Kelder, G.M., Bultsma, T., Timmerman, H. and Rademaker, B., submitted.

  21. Hopfinger, A.J., J. Am. Chem. Soc., 102 (1980) 7196–7206.

    Google Scholar 

  22. Battershell, C., Malhotra, D. and Hopfinger, A.J., J. Med. Chem., 24 (1981) 812–818.

    Google Scholar 

  23. Hopfinger, A.J., J. Med. Chem., 26 (1983) 990–996.

    Google Scholar 

  24. Mabilia, M., Pearlstein, R.A. and Hopfinger, A.J., Eur. J. Med. Chem., 20 (1985) 163–174.

    Google Scholar 

  25. Crippen, G.M., J. Comp. Chem., 5 (1984) 471–476.

    Google Scholar 

  26. Crippen, G.M., J. Comp. Chem., 5 (1984) 548–554.

    Google Scholar 

  27. Crippen, G.M., Int. J. Pept. Protein. Res., 13 (1979) 320–326.

    Google Scholar 

  28. Havel, T.F., Kuntz, I.D. and Crippen, G.M., Biopolymers, 18 (1979) 73–81.

    Google Scholar 

  29. Kuntz, I.D., Crippen, G.M. and Kollman, P.A., Biopolymers, 18 (1979) 939–946.

    Google Scholar 

  30. Kuntz, I.D. and Crippen, G.M., Biophys. J., 32 (1980) 677–702.

    Google Scholar 

  31. Crippen, G.M., Oppenheimer, N.J. and Connolly, M.L., Int. J. Pept. Protein Res., 17 (1981) 156–161.

    Google Scholar 

  32. Kuester, J.L. and Mize, J.H., Optimization Techniques with Fortran, McGraw-Hill, New York, 1973, p. 106.

    Google Scholar 

  33. Ghose, A.K. and Crippen, G.M., J. Med. Chem., 27 (1984) 901–914.

    Google Scholar 

  34. Burkert, U. and Allinger, N.L., Molecular Mechanics, ACS Monograph 177, American Chemical Society, Washington, D.C., 1982, p. 144.

    Google Scholar 

  35. Altona, C. and Faber, D.H., Top. Curr. Chem., 45 (1974) 1–38.

    Google Scholar 

  36. Ghose, A.K. and Crippen, G.M., J. Comp. Chem., 6 (1985) 350–359.

    Google Scholar 

  37. Rekker, R.F. and de Kort, H.M., Eur. J. Med. Chem., 14 (1979) 479–488.

    Google Scholar 

  38. Ghose, A.K. and Crippen, G.M., J. Med. Chem., 28 (1985) 333–346.

    Google Scholar 

  39. Ghose, A.K. and Crippen, G.M., J. Comp. Chem., 7 (1986) 565–577.

    Google Scholar 

  40. Martin, Y.C., Quantitative Drug Design, Marcel Dekker, New York, 1978.

    Google Scholar 

  41. Sheridan, R.P., Nilakantan, R., Dixon, J.S. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 899–906.

    Google Scholar 

  42. Crippen, G.M., Quant. Struct.-Act. Relat., 2 (1983) 95–100.

    Google Scholar 

  43. Kuhl, F.S., Crippen, G.M. and Friesen, D.K., J. Comp. Chem., 5 (1984) 24–34.

    Google Scholar 

  44. Ghose, A.K. and Crippen, G.M., J. Med. Chem., 25 (1982) 892–899.

    Google Scholar 

  45. Ghose, A.K. and Crippen, G.M., J. Med. Chem., 26 (1983) 996–1010.

    Google Scholar 

  46. Simon, Z., Badilescu, I. and Racovital, T., J. Theor. Biol., 66 (1977) 485–491.

    Google Scholar 

  47. Simon, Z., Dragomir, N., Plauchithiu, M.G., Holban, S., Glatt, H. and Kerek, F., Eur. J. Med. Chem., 15 (1980) 521–527.

    Google Scholar 

  48. Karfunkel, H.R., J. Comp. Chem., 7 (1986) 113–119.

    Google Scholar 

  49. DesJarlais, R.L., Sheridan, R.P., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 2149–2153.

    Google Scholar 

  50. Weiner, P.K. and Kollman, P.A., J. Comp. Chem., 2 (1981) 287–303.

    Google Scholar 

  51. Goodford, P.J., J. Med. Chem., 28 (1985) 849–857.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

DEDICATION This article is dedicated to the late Dr. Teake Bultsma who introduced the distance geometry approach into our department.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donné-Op den Kelder, G.M. Distance geometry analysis of ligand binding to drug receptor sites. J Computer-Aided Mol Des 1, 257–264 (1987). https://doi.org/10.1007/BF01677048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01677048

Key words

Navigation