Skip to main content
Log in

Investigation of electronic structure and anisotropy of the Lamb-Mössbauer factor in ZnF2 single crystals

Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Using the 93.3 keV resonance in67Zn the isomer shift, the quadrupole interaction, and the anisotropy of the Lamb-Mössbauer factor (LMF) in ZnF2 single crystals have been investigated. The main component of the electric field gradient (efg) tensorV zz=+(2.18+-0.22)×1017V/cm2 andη=0.29±0.03 are derived.V zz is oriented perpendicular to the crystallographicc axis. The anisotropy of the LMF is large:f x=(2.4±0.1)%,f y=(2.3±0.2)%, andf z=(1.4±0.2)%. Ab initio Hartree-Fock cluster calculations gave a detailed description of the observed charge distribution including the orientation of the efg tensor. Using a force constant model (shell model), we solved the eigenvalue problem of the dynamic matrix and quantitatively reproduced the anisotropy of the LMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. D.S. Rimai, Phys. Rev. B16(1977)4069.

    Google Scholar 

  2. J.K. Vassiliou, J. Appl. Phys. 59(1986)1125, and references therein.

    Google Scholar 

  3. M. Steiner, W. Potzel, C. Schäfer, W. Adlassnig, M. Peter, H. Karzel and G.M. Kalvius, Phys. Rev. B41(1990)1750, and references therein.

    Google Scholar 

  4. W. Potzel and G.M. Kalvius, Phys. Lett. A110(1985)165.

    Google Scholar 

  5. H.H. Klauss, N. Sahoo, P.C. Kelires, T.P. Das, W. Potzel, G.M. Kalvius, M. Frank and W. Kreische, Hyp. Int. 60(1990)853.

    Google Scholar 

  6. S.P. Tewari and P. Silota, Phys. Rev. B45(1992)7471.

    Google Scholar 

  7. K. Haefner, Ph.D. Thesis, University of Chicago (1964), unpublished.

  8. A.Y. Wu, R.J. Sladek and R.S. Feigelson, Phys. Rev. B26(1982)1507.

    Google Scholar 

  9. J.K. Vassiliou, J. Appl. Phys. 57(1985)4543.

    Google Scholar 

  10. D.S. Rimai, Phys. Rev. B16(1977)2200.

    Google Scholar 

  11. W. Schiessl, W. Potzel, H. Karzel, C. Schäfer, M. Steiner, M. Peter, G.M. Kalvius, I. Halevy, J. Gal, W. Schäfer and G. Will, Hyp. Int. 68(1991)161.

    Google Scholar 

  12. W. Potzel, Th. Obenhuber, A. Forster and G.M. Kalvius, Hyp. Int. 12(1982)135.

    Google Scholar 

  13. W. Potzel, W. Adlassnig, U. Närger, Th. Obenhuber, K. Riski and G.M. Kalvius, Phys. Rev. B30(1984)4980.

    Google Scholar 

  14. N.S. Laulainen and M.N. McDermott, Phys. Rev. 177(1969)1606.

    Google Scholar 

  15. S.V. Karyagin, Fiz. Tverd. Tela (Leningrad) 8(1966)1739 [Sov. Phys. Solid State 8(1966)1387].

    Google Scholar 

  16. F.W. de Wette, Phys. Rev. 123(1961)103.

    Google Scholar 

  17. P. Sorantin, Ph.D. Thesis, Technische Universität Wien, Austria (1990), unpublished.

    Google Scholar 

  18. M. Steiner, W. Potzel, M. Köfferlein, H. Karzel, W. Schiessl, G.M. Kalvius, D.W. Mitchell, T.P. Das, R.S. Feigelson and G. Schmidt, in preparation.

  19. W. Potzel, in:Mössbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. 1, eds. G.J. Long and F. Grandjean (Plenum Press, New York, 1993).

    Google Scholar 

  20. C. Benoit and J. Giordano, J. Phys. C21(1988)5209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, M., Köfferlein, M., Potzel, W. et al. Investigation of electronic structure and anisotropy of the Lamb-Mössbauer factor in ZnF2 single crystals. Hyperfine Interact 93, 1453–1458 (1994). https://doi.org/10.1007/BF02072892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02072892

Keywords

Navigation