Skip to main content
Log in

An overview on model-independent data reduction methods in Mössbauer spectroscopy

  • Invited Papers
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

There are two classes of model-independent procedures used for data reduction in Mössbauer spectroscopy viz. resolution improvement and the linear combination methods. Quite often both kinds of procedures can be used one after the other. The resolution-improvement methods decrease the Lorentzian broadening of the resonance lines. The latter face the problem of finding a reasonable compromise between increased noise and false oscillations. The linear combination methods may be used to decompose spectra into several components. Under favourable conditions certain parameters of the hyperfine interaction or their distribution can be determined to a high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mohammad-Djafari and G. Demoment, Appl. Optics 26(1987)1745.

    Article  ADS  Google Scholar 

  2. R.A. Brand and G. Le Caër, Nucl. Instr. Methods B34(1988)272.

    Article  ADS  Google Scholar 

  3. I. Vincze, Nucl. Instr. Methods 199(1982)247.

    Article  Google Scholar 

  4. D.L. Nagy, J. Dengler and G. Ritter,Proc. First Latin-American Conference Appl. Mössbauer Effect, Rio de Janeiro, 1988, eds. E. Baggio-Saitovitch, E. Galvao da Silva and H.R. Rechenberg (World Scientific, Singapore, 1990) p. 286.

    Google Scholar 

  5. A.M. Afanas'ev, E.Yu. Tsymbal and U.Yu. Yuldashev, Hyp. Int. 58(1990)2643.

    ADS  Google Scholar 

  6. A.N. Tichonov,Solutions of Ill-Posed Problems (Winston, Washington DC, 1977).

    Google Scholar 

  7. C. Lánczos,Applied Analysis (Pitman, London, 1957) p. 217.

    Google Scholar 

  8. A.J. Stone, Chem. Phys. Lett. 6(1970)331.

    Article  ADS  Google Scholar 

  9. D. Kaptás and I. Vincze, Hyp. Int. 55(1990)987.

    ADS  Google Scholar 

  10. M. C. Dibar Ure and P.A. Flinn,Mössbauer Effect Methodology, ed. I.J. Gruverman (Plenum Press, New York, 1971) Vol. 7, p. 241.

    Google Scholar 

  11. T. Inouye, T. Harper and N.C. Rasmussen, Nucl. Instr. Methods 67(1969)125.

    Article  Google Scholar 

  12. D.L. Nagy and K. Kulcsár,Proc. Int. Conf. Mössbauer Spectrometry, Dresden, 1971, eds. H. Schnorr and M. Kautz (Physikalische Gesellschaft der DDR, 1971) p. 618.

  13. B. Window, J. Phys. E: Sci. Instrum 4(1971)401.

    Article  ADS  Google Scholar 

  14. F. Varret, A. Gerard and P. Imbert, Phys. Stat. Sol. (b) 43(1971)723

    Google Scholar 

  15. J. Hesse and A. Rübartsch, J. Phys. E: Sci. Instrum. 7(1974)526.

    Article  ADS  Google Scholar 

  16. T.E. Sharon and C.C. Tsuei, Solid State Commun. 9(1971)1923

    Article  ADS  Google Scholar 

  17. T.E. Sharon and C.C. Tsuei, Phys. Rev. B 5(1972)1047

    Article  ADS  Google Scholar 

  18. J. Logan and E. Sun, J. Non-cryst. Solids 20(1976)285

    Article  ADS  Google Scholar 

  19. I. Vincze, Solid State Commun. 25(1978)689.

    Article  MathSciNet  ADS  Google Scholar 

  20. L. Bottyán, B. Molnár, D.L. Nagy, I.S. Szücs, J. Tóth, J. Dengler, G. Ritter and J. Schober, Phys. Rev. B 38(1988)11373.

    Article  ADS  Google Scholar 

  21. H. Domes, O. Leupold, D.L. Nagy, G. Ritter, H. Spiering, B. Molnár and I.S. Szücs, J. Chem. Phys. 85(1986)7294.

    Article  ADS  Google Scholar 

  22. O. Leupold, personal communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, D.L., Röhlich, U. An overview on model-independent data reduction methods in Mössbauer spectroscopy. Hyperfine Interact 66, 105–125 (1991). https://doi.org/10.1007/BF02395861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02395861

Keywords

Navigation