Skip to main content
Log in

Aftereffects in zeolite‐encapsulated 57Co‐complexes

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Tris(2,2'-bipyridyl)-57CoII and bis(2,2':6',2'-terpyridine)-57CoII complexes were synthesised in the supercages of zeolite‐Y in order to study the effect of molecular isolation on the aftereffects of the 57Co(EC)57Fe decay. As compared to the regular crystalline salts of the complex ions where, according to the emission Mössbauer spectra, the most abundant species is low‐spin FeII, the molecular isolation in the zeolite resulted in a larger fraction of low‐spin FeIII and a varying amount of high‐spin Fe2+ species. In the investigated temperature range, 20 K to 295 K, the majority of the changes was observed above 80 K. In the case of tris (2,2'-bipyridyl)-57CoII-Y, the most characteristic change occurred in valence states, while for bis (2,2':6',2'-terpyridine)-57CoII‐Y, the temperature dependence of the spin states was more prominent. The change in the low spin valence states is explained partly by donor-acceptor properties of the zeolite lattice. The variation in the high spin fraction is explained by radiation damage of the ligand sphere and/or fragmentation of the complex ion followed by incomplete recombination in the supercage. Molecular isolation itself did not seem to increase the chance of fragmentation (as a consequence of charge neutralization following Auger ionization) of these highly conjugated complex molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Sano and P. Gütlich, Hot atom chemistry in relation to Mössbauer emission spectroscopy, in: Hot Atom Chemistry, ed. T. Matsuura (Kodanski, Tokyo, 1984) p. 265.

    Google Scholar 

  2. H. Pollak, Phys. Status Solidi 2 (1962) 270.

    Google Scholar 

  3. A. Nath, M.P. Klein and W. Kündig, Chem. Phys. Lett. 2 (1968) 471.

    Article  ADS  Google Scholar 

  4. A. Nath, M.P. Klein, W. Kündig and D. Lichtenstein, Radiation Effects 2 (1970) 211.

    Google Scholar 

  5. E.M. Baggio-Saitovitch, J.M. Friedt and J. Danon, J. Chem. Phys. 56 (1972) 1269.

    Article  Google Scholar 

  6. M.I. Afanasov, Yu.D. Perfiliev and A.N. Babeshkin, J. Radioanal. Chem. 27 (1975) 125.

    Google Scholar 

  7. T.S. Srivastava and A. Nath, J. Phys. Chem. 80 (1976) 529.

    Article  Google Scholar 

  8. M.I. Afanasov, L.A. Kulikov and A.N. Babeshkin, Radiochem. Radioanal. Lett. 57 (1983) 247.

    Google Scholar 

  9. A. Nath, Ch. Sauer and A. Halpern, J. Chem. Phys. 78 (1983) 5125.

    Article  ADS  Google Scholar 

  10. J.M. Friedt and J.P. Adloff, C.R. Acad. Sci. Paris 264 (1967) 1356.

    Google Scholar 

  11. P. Gütlich, S. Odar, B.W. Fitzsimmons and N.E. Erickson, Radiochim. Acta 10 (1968) 147.

    Google Scholar 

  12. E.F.T. Lee and L.V.C. Rees, Zeolites 7 (1987) 143.

    Article  Google Scholar 

  13. W.H. Quayle, G. Peeters, G.L. De Roy, E.F. Vansant and J.H. Lunsford, Inorg. Chem. 21 (1982) 2226.

    Article  Google Scholar 

  14. S. Deisenroth, A. Hauser, H. Spiering and P. Gütlich, Hyp. Interact. 93 (1994) 1573.

    Article  Google Scholar 

  15. S. Deisenroth, H. Spiering, D. Schollmeyer, D.L. Nagy and P. Gütlich, in: ICAME '95, Conf. Proceedings, Vol. 50, ed. I. Ortalli (SIF, Bologna, 1996) p. 23.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homonnay, Z., Vankó, G., Vértes, A. et al. Aftereffects in zeolite‐encapsulated 57Co‐complexes. Hyperfine Interactions 113, 331–339 (1998). https://doi.org/10.1023/A:1012640119963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012640119963

Keywords

Navigation