Skip to main content
Log in

Sampling, preservation and quantification of biological samples from highly acidic environments (pH ≤3)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Standard methods for sampling, fixation and quantification of organisms in highly acid environments with pH values at or below 3 are presented. Some important problems are discussed, together with recommendations on how to handle the material. Examples of specific problems are included, especially the effects of fixatives on the cell dimensions of species of Chlamydomonas, Oxytricha and Actinophrys, and on cell numbers of Actinophrys. Mixed populations of heterotrophic protists should be preserved with Lugol's solution, because other fixatives do not permit the recognition of heliozoans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barber, H. G. & E. Y. Haworth, 1981. A Guide to the Morphology the Diatom Frustule. Sci. Publs, Freshwat. Biol. Ass. No. 44: 113 pp.

  • Barmuta, L. A., S. D. Cooper, S. T. K. Hamilton, K. W. Kratz, L.M. Melack & S. K. Hamilton, 1990. Responses of zooplankton and zoobenthos to experimental acidification in a high-elevation lake (Sierra Nevada, California, U.S.A.). Freshwat. Biol. 23: 571–586.

    Google Scholar 

  • Bloem, J., M.-J. Bär-Gilissen & T. E. Cappenberg, 1986. Fixation, counting and manipulation of heterotrophic nanoflagellates. Appl. environ. Microbiol. 52: 1266–1272.

    Google Scholar 

  • Booth, B. C., 1993. Estimating cell concentration and biomass of autotrophic plankton using microscopy. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton: 199–206.

    Google Scholar 

  • Caron, D. A., 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. envir. Microbiol. 46: 491–498.

    Google Scholar 

  • Choi, J. W. & D. K. Stoecker, 1989. Effects of fixation on cell volume of marine planktonic protozoa. Appl. envir. Microbiol. 55: 1761–1765.

    Google Scholar 

  • Deneke, R., 2000. Review of rotifers and crustaceans in highly acidic environments of pH values <3. Hydrobiologia 433: 167–172.

    Google Scholar 

  • DeNicola, D., 2000. A review of diatoms found in highly acidic environments. Hydrobiologia 433: 111–122.

    Google Scholar 

  • Geller, W., H. Klapper & M. Schultze, 1998. Natural and anthropogenic sulphuric acidification of lakes. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer-Verlag, Berlin, Heidelberg, New York: 3–14

    Google Scholar 

  • Haney, J. F. & D. J. Hall, 1973. Sugar-coated Daphnia: A preservation technique for Cladocera. Limnol. Oceanogr. 18: 331–333.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Leakey, R. J. G., P. H. Burkill & M. A. Sleigh, 1994. A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton. Res. 16: 375–389.

    Google Scholar 

  • Lessmann, D., A. Fyson & B. Nixdorf, 2000. Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH ? 3. Hydrobiologia 433: 123–128.

    Google Scholar 

  • Nixdorf, B., U. Mischke & D. Lessmann, 1998a. Chrysophytes and chlamydomonads: pioneers of colonization in extremely acidic mining lakes (pH <3) in Lusatia (Germany). Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 315–327.

    Google Scholar 

  • Nixdorf, B., K. Wollmann & R. Deneke, 1998b. Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Berlin, Heidelberg, New York: Springer-Verlag: 147–167.

    Google Scholar 

  • Olson, R. J., E. R. Zettler & M. D. DuRand, 1993. Phytoplankton analysis using flow cytometry. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton: 175–186.

    Google Scholar 

  • Packroff, G. & S. Woelfl, 2000. A review on the occurrence and taxonomy of heterotrophic protists in extreme acidic environments of pH values ? 3. Hydrobiologia 433: 153–156.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 25: 943–948.

    Google Scholar 

  • Satake, K. & Y. Saijo, 1974. Carbon dioxide content and metabolic activity of microorganisms in some acid lakes in Japan. Limnol. Oceanogr. 19: 331–338.

    Google Scholar 

  • Schultze, M., H. Klapper, B. Nixdorf, U. Mischke & U. Grünewald, 1994. Bund/Länder-Arbeitsgruppe Wasserwirtschaftliche Planung. Methodik zur limnologischen Untersuchung und Bewertung von Bergbaurestseen.

  • Sherr, E. B. & B. F. Sherr, 1993. Preservation and storage of samples for enumeration of heterotrophic protists. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton: 207–212.

    Google Scholar 

  • Sime Ngando, T. & C. A. Groliere, 1991. Quantitative effects of fixatives on the storage of freshwater planktonic ciliates. Arch. Protistenk. 140: 109–120.

    Google Scholar 

  • Sime Ngando, T., H. J. Hartmann & C. A. Groliere, 1990. Rapid quantification of planktonic ciliates: Comparison of improved live counting with other methods. Appl. Environ. Microbiol. 56: 2234–2242.

    Google Scholar 

  • Steinberg, C. E. W., H. Schäfer, J. Tittel & W. Beisker, 1998. Phytoplankton composition and biomass spectra created by flow cyctometry and zooplankton composition in mining lakes of different states of acidification. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer Verlag, Berlin, Heidelberg, New York: 127–145.

    Google Scholar 

  • Stoecker, D. K., D. J. Gifford & M. Putt, 1994. Preservation of marine planktonic ciliates: Losses and cell shrinkage during fixation. Mar. Ecol. Progr. Ser. 110: 293–299.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Wiackowski, K., A. Doniec & J. Fyda, 1994. An empirical study of the effect of fixation on ciliate cell volume. Mar. microbial. Food Webs 8: 59–69.

    Google Scholar 

  • Woelfl, S., 2000. Limnology of sulphur-acidic lignite mining lakes. Verh. int. Ver. Limnol. Biological properties: Plankton structure of an extreme habitat.

  • Woelfl, S., B. Zippel & G. Packroff, 1997. Planktongesellschaften der mitteldeutschen Tagesbaurestseen. Deutsche Gesellschaften für Limnologie, Frankfurt, Tagungsberichte: 376–380.

    Google Scholar 

  • Wollmann, K., 2000. Corixidae (Hemiptera, Heteroptera) in acidic mining lakes with pH <3 in Lusatia, Germany. Hydrobiologia 433: 181–183.

    Google Scholar 

  • Yoshitake, S. & H. Fukushima, 1998. Living micro-algal communities in inorganic acid waters in Japan. Verh. int. Ver. Limnol. 26: 1791–1795.

    Google Scholar 

  • Zimmermann, U., H. Müller & T. Weisse, 1996. Seasonal and spatial variability of planktonic heliozoa in Lake Constance. Aquat. microb. Ecol. 11: 21–29.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woelfl, S., Whitton, B.A. Sampling, preservation and quantification of biological samples from highly acidic environments (pH ≤3). Hydrobiologia 433, 173–180 (2000). https://doi.org/10.1023/A:1004099527441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004099527441

Navigation