Skip to main content
Log in

Lack of pattern among phytoplankton assemblages. Or, what does the exception to the rule mean?

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In Science we cannot say that `the exception proves the rule'. We have been looking to define patterns in phytoplankton occurrence across trophic spectra where conspicuous covariations between algae and trophic states have been reported. We consider quite different phytoplankton communities observed under similar trophic conditions: we illustrate this point by considering five different phytoplankton communities living in five water bodies in the same wetland, along a TP gradient and over a period of 2 years. This system showed a remarkable dissimilarity of species representation, implying communities of uncorrelated species vary considerably over time. Despite the presence of some characteristic species, communities were not related to a given trophic state. However, coarser community attributes, such as clusters of taxonomic classes, appeared to be more useful in identifying patterns and assembly rules related to trophic spectra. Some ecological concepts can be related to this lack of pattern, e.g., nonconvergence, trajectories far from equilibrium and assembly rules of communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Cobelas, M. & S. Cirujano (eds), 1996. Las Tablas de Daimiel, Ecología Acuájtica y Sociedad. Organismo Autónomo de Parques Nacionales, Madrid, 368 pp.

    Google Scholar 

  • Bunge, M., 1975. La Investigación Cientifíca. Su estrategia y su filosofía. Ariel, Barcelona, 955 pp.

    Google Scholar 

  • Drake, J. A., 1990a. Communities as assembled structures: Do rules govern pattern? TREE 5: 159–164.

    Google Scholar 

  • Drake, J. A., 1990b. The mechanics of community assembly and succession. J. theor. Biol. 147: 213–233.

    Google Scholar 

  • Legendre, L. & P. Legendre, 1979. Ecologie Numerique, 1: Le Traitament Multiple des Données Ecologiques. Masson, Paris, 247 pp.

    Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Mulamoottil, G., B. G. Warner & E. A. McBean, 1996. Wetlands. Environmental Gradients, Boundaries, and Buffers. Lewis Publishers, Boca Raton, FL, 298 pp

    Google Scholar 

  • Padisák, J., 1992. Seasonal succession of phytoplankton in a large, shallow lake (Balaton, Hungary): a dynamic approach to ecological memory, its possible role and mechanisms. J. Ecol. 80: 217–230.

    Google Scholar 

  • Pielou, E. C., 1974. Population and Community Ecology. Gordon & Breach, New York.

    Google Scholar 

  • Reynolds, C. S., 1996. Plant life of the pelagic. Verh. int. Ver. Limnol. 26: 97113.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: a Model for Ecosystem Theory. Excellence in Ecology Books. Ecology Institute, Oldendorf, 371 pp.

    Google Scholar 

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status?. Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 11–26.

    Google Scholar 

  • Rojo, C., 1996. Fitoplancton. In Alvarez-Cobelas, M. & S. Cirujano (eds), Las Tablas de Daimiel. Ecología Acuática y Sociedad. Organismo Autónomo de Parques Nacionales, Madrid: 107–116.

    Google Scholar 

  • Rojo, C., 1998. Differential attributes of phytoplankton across the trophic gradient: a conceptual landscape with gaps. Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 1–9.

    Google Scholar 

  • Rojo, C. & M. Alvarez-Cobelas, 1993. Hypertrophic phytoplankton and Intermediate Disturbance Hypothesis. Hydrobiologia 249 (Dev. Hydrobiol. 81): 43–58

    Google Scholar 

  • Rojo, C. & J. Rodriguez, 1994. Seasonal variability of phytoplankton size structure in a hypertrophic lake. J. Plankton Res. 16: 317–335.

    Google Scholar 

  • Rojo, C., E. Ortega-Mayagoitia & V. Conforti, 1999. Fitoplancton del Parque Nacional de Las Tablas de Daimiel. 1. Las euglenofitas. An. Jard. Bot. Madrid 57(1): 15–23.

    Google Scholar 

  • Samuels, C. & J. A. Drake, 1997. Divergent perspectives on community convergence. TREE 12: 427–432.

    Google Scholar 

  • Seip. K. L. & C. Reynolds, 1995. Phytoplankton functional attributes along trophic gradient and season. Limnol. Oceanogr. 40: 589–597.

    Google Scholar 

  • Sneath, P. H. A. & R. R. Sokal, 1973. Numerical Taxonomy. Freeman, San Francisco, 573 pp.

    Google Scholar 

  • Van der Steen, W. J., 1993. A Practical Philosophy for the Life Sciences. State University of New York Press, Albany, 208 pp.

    Google Scholar 

  • Weiher, E. & P. A. Keddy, 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74: 159–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojo, C., Ortega-Mayagoitia, E. & Alvarez-Cobelas, M. Lack of pattern among phytoplankton assemblages. Or, what does the exception to the rule mean?. Hydrobiologia 424, 133–139 (2000). https://doi.org/10.1023/A:1003917414959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003917414959

Navigation