Skip to main content
Log in

Exploited marine invertebrates: genetics and fisheries

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The application of genetic techniques to invertebrate fisheries is in many ways essentially similar to that in vertebrate (i.e. finfish) fisheries, for which there is already an extensive body of published data. However, there are also relative differences which lead to particular problems in the use of genetic data to study commercially important invertebrate species. The main role for genetics of both vertebrates and invertebrates has been, and is likely to continue to be, the identification of groups of interbreeding individuals as the basis for a fishery. It is in the identification of the breeding unit that the genetic differences between vertebrates and invertebrates can be of practical significance. The genetic breeding unit, usually called a 'stock' in fisheries biology, generally shows a certain uniformity of size in most marine fish which have been studied. Smaller or less mobile fish (e.g. flatfish) may only range a few tens of kilometres to their breeding grounds, whilst in more mobile, particularly migratory pelagic species (e.g. Scombridae), the area occupied by a stock is likely to be far greater and for a few (e.g. large pelagic elasmobranchs), a single unit of stock may be almost circumglobal. However, marine fish generally, particularly those large or plentiful enough to be of commercial interest, are likely to be fairly mobile and in many cases the order of mobility is likely to be in the region we might predict from our knowledge of the biology and habits of the species. In the genetic assessment of `stocks' for invertebrate fisheries, we face a number of additional problems, mostly related to the large evolutionary range of invertebrates exploited and their widely different biology. Although in Europe and North America marine invertebrate fisheries may be thought of as being mainly for decapod crustaceans and bivalve molluscs, globally commercially important marine invertebrate fisheries range from sponges to squid and include such diverse groups as sea cucumbers, barnacles, krill, octopuses, cuttlefish, sea anemones, ascidians, polychaetes, sea urchins, gastropods and jellyfish. An obvious feature of many of these invertebrates is that the adult (i.e. commercial) stage of the life cycle is sessile (e.g. barnacles, sponges, ascidians) or of very limited mobility (e.g. sea anemones, sea urchins, bivalves, gastropods), with the result that the dispersive phase of the life cycle is the larva. Other groups (e.g. krill, jellyfish) are planktonic or nektonic and may cover very large distances, but, unlike fish, have little control over the distance or direction of travel, whilst some of the open ocean pelagic squid are more mobile than most fish and may migrate thousands or kilometres to spawning grounds. The very low mobility of both larva and adult in some invertebrates indicates that dispersal, and hence stock size, is likely to be low and that, therefore, stocks are far more vulnerable to overfishing than in most fish species. An additional difficulty is that genetic studies to date indicate a remarkably high incidence of cryptic speciation in marine invertebrates, sometimes even in comparatively well studied commercially important species. Thus, although to date marine invertebrate fisheries have not received the same level of attention from geneticist as finfish fisheries, it is clear that for invertebrate fisheries genetic data are relatively far more important if a fishery is to be exploited without being endangered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbiati, M. & F. Maltagliati, 1992. Genetic population structure of Neanthes succinea (Polychaeta: Nereididae). J. mar. biol. Ass. U.K. 72: 511–517.

    Google Scholar 

  • Abbiati, M. & F. Maltagliati, 1996. Allozyme evidence of genetic differentiation between populations of Hediste diversicolor (Polychaeta: Nereididae) from the western Mediterranean. J. mar. biol. Ass. U.K. 76: 637–647.

    Google Scholar 

  • Ahinad, M., D. 0. F. Skibinski & J. A. Beardinore, 1977. An estimate of the amount of genetic variability in the common mussel Mytilus edulis. Biochem. Genet. 15: 833–846.

    Google Scholar 

  • Allcock, A. L., 1997. The genetics and taxonomy of Southern Ocean Octopodidae, with special reference to the genus Pareledone. Unpublished thesis, University of Liverpool, Port Erin, Isle of Man.

    Google Scholar 

  • Allcock, A. L., A. S. Brierly, J. P. Thorpe & P. G. Rodhouse, 1997. Restricted gene flow and evolutionary divergence between geographically separated populations of the Antarctic octopus Pareledone turgueti. Mar. Biol. 129: 97–102.

    Google Scholar 

  • Allendorf, F., N. Ryman & F. Utter, 1987. Genetics and fishery management: past present and future. In Ryman, N. & F. Utter (eds), Population Genetics and Fishery Management. University of Washington Press, Seattle: 1–20.

    Google Scholar 

  • Ally, J. R. R. & S. C. Keck, 1978. A biochemical genetic population structure study of market squid, Loligo opalescens, along the Californian coast. Calif. Fish Game 169: 113–121.

    Google Scholar 

  • Altukov, Y. P., 1981. The stock concept from the viewpoint of population genetics. Can. J. Fish. aquat. Sci. 38: 1523–1528.

    Google Scholar 

  • Alvarez-Bremer, J. R., J. Mejuto & B. Ely, 1995. Global population structure of the swordfish (Xiphias gladius) as revealed by the analysis of the mitochondrial control region. Collect. Vol. Sci. Pap. Iccat 44: 206–216.

    Google Scholar 

  • Augustyn, C. J. & W. S. Grant, 1988. Biochemical and morphological systematics of Loligo vulgris vulgaris Lamark and Loligo vulgaris reynaudi D'Orbigny nov. comb. (Cephalopoda: Myopsida). Malacologia 29: 215–233.

    Google Scholar 

  • Ayala, F. J. & J. W. Valentine, 1979. Genetic variability in the pelagic environment: a paradox? Ecology 60: 24–29.

    Google Scholar 

  • Ayala, F. J., J. W. Valentine, D. Hedgecock & L. G. Barr, 1974. Deep-sea asteroids: high genetic variability in a stable environment. Evolution 29: 203–212.

    Google Scholar 

  • Ayala, F. J., J. W. Valentine & G. S. Zuinwalt, 1975. An electrophoretic study of the Antarctic zooplankton Euphausia superba. Limnol. Oceanog 20: 635–640.

    Google Scholar 

  • Ayala, F. J., G. S. Zuinwalt, D. Hedgecock & J. W. Valentine, 1973. Genetic variation in Tridacna maxima, an ecological analogue of some unsuccessful evolutionary lineages. Evolution 27: 177–191.

    Google Scholar 

  • Ayre, D. J., 1984. The effects of sexual and asexual reproduction on geographic variation in the sea anemone Actinia tenebrosa. Gecologia 62: 222–229.

    Google Scholar 

  • Ayre, D. J., J. Read & J. Wishart, 1991. Genetic subdivision within the eastern Australian population of the sea anemone Actinia tenebrosa. Mar. Biol. 109: 379–390.

    Google Scholar 

  • Backeljau, T., P. Boucher & F. Gofas, 1994. Genetic variation, systematics and distribution of the venerid clam Chamelea gallina. J. mar. biol. Ass. U.K. 74: 211–223.

    Google Scholar 

  • Bastrop, R., K. Juerss & C. Sturmbauer, 1998. Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Mol. Biol. Evol. 15: 97–103.

    Google Scholar 

  • Bastrop, R., M. Roehner & K. Juerss, 1995. Are there two species of the polychaete genus Marenzellaria in Europe? Mar. Biol. 121: 509–516.

    Google Scholar 

  • Beaumont, A. R. & C. M. Beveridge, 1984. Electrophoretic survey of genetic variation in Pecten maximus, Chlamys opercularis, C. varia and C. distorta from the Irish Sea. Mar. Biol. 81: 299–306.

    Google Scholar 

  • Beaumont, A. R. & S. M. J. Pether, 1996. Allozyme variation and gene flow between cockle Cerastoderma edule populations in southern United Kingdom. Fish. Res. 28: 263–275.

    Google Scholar 

  • Bembo, D. G., G. R. Carvalho, N. Cingolani, E. Amen, G. Giannetti & T. J. Pitcher, 1996. Allozymic and morphometric evidence for two stocks of the European anchovy Engraulis encrasicolus in adriatic waters. Mar. Biol. 126: 529–538

    Google Scholar 

  • Bentzen, P., C. T. Taggart, D. E. Ruzzante & D. Cook, 1996. Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the northwest Atlantic. Can. J. Fish. aquat. Sci. 53: 2706–2721.

    Google Scholar 

  • Benzie, J. A. H., S. Frusher & E. Bailment, 1992. Geographical variation in allozyme frequency in populations of Penaeus monodon (Crustacea: Decapoda). Aust. J. mar. Freshwat. Res. 43: 715–725.

    Google Scholar 

  • Benzie, J. A. H., C. Sandusky & C. R. Wilkinson, 1994. Genetic structure of dictyoceratid sponge populations on the western Coral Sea reefs. Mar. Biol. 119: 335–345.

    Google Scholar 

  • Berger, E. M., 1983. Population genetics of marine gastropods and bivalves. In Russell-Hunter, W. D. (ed.), The Mollusca. Academic Press, London: 563–596.

    Google Scholar 

  • Berkow, R. L., L. Schlabach, R. Dodson et al., 1993. In vivo administration of the anti cancer agent bryostatin 1 activates platelets and neutrophils and modulates protein kinase activity. Cancer Res. 53: 2810–2815.

    Google Scholar 

  • Bernatchez, L., 1994. Molecular biology techniques in fishery management: applications and perspectives. Bull. fr. Peche Piscic. 332: 1–9.

    Google Scholar 

  • Bielawski, J. P. & D. E. Pumo, 1997. Randomly amplified polymorphic DNA (RAPD) analysis of Atlantic coast striped bass. Heredity 78: 32–40.

    Google Scholar 

  • Booth, J. D., R. J. Street & P. J. Smith, 1990. Systematic status of the rock lobsters Jasus edwardsii from New Zealand and J. novaehollandiae from Australia. New Zealand J. mar. Freshwat. Res. 24: 239–249.

    Google Scholar 

  • Boyd, H. C., I. L. Weissman & Y. Saito, 1990. Morphologic and genetic verification that Monterey Botryllus and Woods Hole Botryllus are the same species. Biol. Bull. 178: 239–250.

    Google Scholar 

  • Bravo de Laguna, J., 1989. Managing an international multispecies fishery. The Saharan trawl fishery for cephalopods. In Caddy, J. F. (ed.), Marine Invertebrate Fisheries: Their Assessment and Management. Wiley, New York: 591–612.

    Google Scholar 

  • Brewer, R. H., 1991. Morphological differences between and reproductive isolation of two populations of the jellyfish Cyanea in Long Island Sound, U.S.A. Hydrobiologia 216: 471–477.

    Google Scholar 

  • Brierley, A. S., A. L. Allcock, J. P. Thorpe & R. D. Clarke, 1996. Biochemical genetic evidence supporting the taxonomic separation of Loligo edulis and Loligo chinensis (Cephalopoda: Teuthoidea) from the genus Loligo. Mar. Biol. 127: 97–104.

    Google Scholar 

  • Brierley, A. S., M. R. Clarke & J. P. Thorpe, 1997. Ctenopteryx sicula, a bathypelagic loliginid squid? Am. malacol. Bull 12: 137–144.

    Google Scholar 

  • Brierley, A. S., P. G. Rodhouse, J. P. Thorpe & M. R. Clarke, 1993a. Genetic evidence of population heterogeneity and cryptic speciation in the ommastrephid squid Martialia hyadesi from the Patagonian shelf and Antarctic Polar frontal zone. Mar. Biol. 116: 593–602.

    Google Scholar 

  • Brierley, A. S. & J. P. Thorpe, 1994. Biochemical genetic evidence supporting the taxonomic separation of Loligo gahi from the genus Loligo. Antarctic Sci. 6: 143–148.

    Google Scholar 

  • Brierley, A. S., J. P. Thorpe, M. R. Clarke & H. Martins, 1993b. A preliminary biochemical genetic investigation of the population structure of Loligo forbesi Steenstrup, 1856 from the British Isles and the Azores. In Okutani, T., K. O'Dor & T. Kubodera (eds), Recent Advances in Cephalopod Fisheries Biology. Tokai University Press, Shimizu City, Japan: 59–67.

    Google Scholar 

  • Brierley, A. S., J. P. Thorpe, G. J. Pierce, M. R. Clarke & P. R. Boyle, 1995. Gene variation in the neritic squid Loligo forbesi (Myopsida, Loliginidae) in the Northeast Atlantic ocean. Mar. Biol. 122: 79–86.

    Google Scholar 

  • Bristow, G. A. & R. L. Vadas, 1991. Genetic variability in bloodworm (Glyera dibranchiata) populations in the gulf of Maine. Mar. Biol. 109: 311–319.

    Google Scholar 

  • Buroker, N. E., 1984. Gene flow in mainland and insular populations of Crassostrea (Ostreidae). Biol. Bull. 166: 550–557.

    Google Scholar 

  • Caddy, J. F., 1989. Marine invertebrate fisheries: their assessment and management. Wiley, London.

    Google Scholar 

  • Carlton, J. T., 1985. Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water. Oceanog. mar. Biol. ann. Rev. 23: 313–371.

    Google Scholar 

  • Canton, J. T., 1987. Patterns of transoceanic marine biological invasions in the Pacific Ocean. Bull. mar. Sci. 41: 425–465.

    Google Scholar 

  • Carlton, J. T., 1992. Introduced marine and estuarine mollusks of North America: an end of the 20th-century perspective. J. Shellfish Res. 11: 489–505.

    Google Scholar 

  • Carlton, J. T. & J. B. Geller, 1993. Ecological roulette: the global transport of indigenous organisms. Science 261: 78–82.

    Google Scholar 

  • Carlton, J. T. & J. Hodder, 1995. Biogeography and dispersal of coastal marine organisms: experimental studies on a replica of a 16th-century sailing vessel. Mar. Biol. 121: 721–730.

    Google Scholar 

  • Carvalho, G. R. & L. Hauser, 1995. Molecular genetics and the stock concept in fisheries. In Carvalho, G. R. & T. J. Pitcher (eds), Molecular Genetics in Fisheries. Chapman and Hall, London: 55–79.

    Google Scholar 

  • Carvalho, G. R. & L. Hauser, 1998. Advances in the molecular analysis of fish population structure. Ital. J. Zool. 65: 21–33.

    Google Scholar 

  • Carvalho, G. R. & T. J. Pitcher, 1989. Biochemical genetic studies on the Patagonian squid Loligo gahi d'Orbigny. II. Population structure in Falkland waters using isozymes, morphometrics and life history data. J. exp. mar. Biol. Ecol. 126: 243–258.

    Google Scholar 

  • Carvalho, G. R. & T. J. Pitcher. 1995. Molecular Genetics in Fisheries. Chapman and Hall, London.

    Google Scholar 

  • Carvalho, G. R., A. Thompson & A. L. Stoner, 1992. Genetic diversity and population differentiation of the shortfin squid Illex argentinus in the south-west Atlantic. J. exp. mar. Biol. Ecol. 158: 105–121.

    Google Scholar 

  • Chan, T. Y. & K. H. Chu, 1996. On the different forms of Panulirus longipes femoristriga (Von Martens, 1872) (Crustacea: Decapoda: Palinuridae), with a description of a new species. J. nat. Hist. 30: 367–387.

    Google Scholar 

  • Chow, S., H. Okamoto, Y. Uozumi, Y. Takeuchi & H. Takeyama, 1997. Genetic stock structure of the swordfish (Xiphias gladius) inferred by PCR-RFLP analysis of the mitochondrial DNA control region. Mar. Biol. 127: 359–367.

    Google Scholar 

  • Chow, S. & H. Ushiama, 1995. Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar. Biol. 123: 39–45.

    Google Scholar 

  • Christofferson, J. P., A. Foss, W. E. Lambert & B. Welge, 1978. An electrophoretic study of select proteins from the market squid Loligo opalescens along the California coast. Calif. Fish. Game 169: 123–133.

    Google Scholar 

  • Clarke, M. R., 1977. Beaks, nets and numbers. Symp. zool. Soc. Lond. 38: 89–126.

    Google Scholar 

  • Clarke, M. R., 1980. Cephalopods in the diet of sperm whales in the southern hemisphere and their bearing on sperm whale biology. Discovery Rep. 37: 1–324.

    Google Scholar 

  • Clarke, M. R., 1987. Biomass of cephalopods-estimation from predation. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Academic Press, London: 221–237.

    Google Scholar 

  • Conceição, M. B., J. D. D. Bishop & J. P. Thorpe, 1998. Genetic relationships between ecologically divergent species of talitrid amphipod (Crustacea). Mar. Ecol. Prog. Ser. 165: 225–234.

    Google Scholar 

  • Cornelius, P. F. S., 1992. The Azores hydroid fauna and its origin, with discussion of rafting and medusa suppression. Arquipelago 10: 75–99.

    Google Scholar 

  • Corte-Real, H. B. S. M., S. J. Hawkins & J. P. Thorpe, 1996a. An interpretation of the taxonomic relationship between the limpets Patella rustica and P. piperata. J. mar. Biol. Ass. U.K. 76: 717–732.

    Google Scholar 

  • Corte-Real, H. B. S.M., S. J. Hawkins & J. P. Thorpe, 1996b. Population differentiation and genetic confirmation of the taxonomic status of the exploited limpet Patella candei in the Macaronesian islands (Azores, Madeira, Canaries). Mar. Biol. 125: 141–152.

    Google Scholar 

  • Currens, K. P. & C. A. Busack, 1995. A framework for assessing genetic vulnerability. Fisheries 20: 24–31.

    Google Scholar 

  • David, P., P. Mireille-Ange, P. Anne-Françoise & J. Philippe, 1997. Fine-grained spatial and temporal population genetic structure in the marine bivalve Spisula ovalis. Evolution 51: 1318–1322.

    Google Scholar 

  • Davis, A. R., D. J. Ayre, M. R. Billingham, C. A. Styan & G. A. White, 1996. The encrusting sponge Halisarca laxus: population genetics and association with the ascidian Pyura spinifera. Mar. Biol. 126: 27–33.

    Google Scholar 

  • De Matthaeis, E., M. Cobolli, M. Mattocia & F. Scapini, 1995. Geographic variation in Talitrus saltator (Crustacea: Amphipoda). Boll. Zool. 62: 77–84.

    Google Scholar 

  • Debenham, P., 1997. Molecular approaches to assessing red sea urchin (Strongylocentrotus franciscianus) populations: Implications of sequence variation for evolution and population genetics of the species. Unpublished thesis, University of California, Santa Barbara.

    Google Scholar 

  • Doherty, P. J., S. Planes & P. Mather, 1995. Gene flow and larval duration in seven species of fish from the great barrier reef. Ecology 76: 2373–2391.

    Google Scholar 

  • Edmands, S., P. E. Moberg & R. S. Burton, 1996. Allozyme and mitochondrial DNA evidence of population subdivision in the purple sea urchin Stronglylocentrotus purpuratus. Mar. Biol. 126: 443–450.

    Google Scholar 

  • Epifanio, J. M., J. B. Koppelman, M. A. Nedbal & D. P. Philipp, 1996. Geographic variation of paddlefish allozymes and mitochondrial DNA. Trans. am. Fish. Soc. 125: 546–561.

    Google Scholar 

  • Evans, R., 1994. Reproduction of the unitary larvaceous ascidian Dendrodoa grossularia. Unpublished thesis. University of Liverpool, Port Erin, Isle of Man.

    Google Scholar 

  • Faulkner, D. J., 1993. Academic chemistry and the discovery of bioactive marine natural products. In Attaway, D. H. & O. R. Zaborsky (eds), Marine Biotechnology-Pharmaceutical and Bioactive Natural Products. Plenum Press, New York: 459–474.

    Google Scholar 

  • Faulkner, D. J., 1995. Marine natural products. Natur. Product Rep. 12: 223–269.

    Google Scholar 

  • Ferguson, A., 1994. Molecular genetics and fisheries: Current and future perspectives. Rev. Fish Biol. Fish. 4: 389–392.

    Google Scholar 

  • Ferris, S. D. & W. J. Berg, 1987. The utility of mitochondrial DNA in fish genetics and fishery management. In Ryman, N. & F. Utter (eds), Population Genetics and Fishery Management. University of Washington Press, Seattle: 277–300.

    Google Scholar 

  • Fevolden, S. E., 1984. Biotic and physical environmental impact on genetic variation of krill. J. Crust. Biol. 4: 206–223.

    Google Scholar 

  • Fevolden, S. E., 1985. Genetic variation of Euphausia superba Dana in the Antarctic Peninsula waters. Sarsia 71: 169–175.

    Google Scholar 

  • Fevolden, S. E. & R. Schneppenheim, 1989. Genetic homogeneity of krill (Euphausia superba Dana) in the Southern Ocean. Polar Biol. 9: 533–539.

    Google Scholar 

  • Ford, M. J. & J. B. Mitton, 1993. Population structure of the pink barnacle, Tetraclita squamosa rubescens, along the California coast. Mol. mar. Biol. Biotechnol. 2: 147–153.

    Google Scholar 

  • Frazier, J. G. et al., 1985. Epizoan communities on marine turtles. 1. Bivalve and gastropod mollusks. Mar. Ecol. 2: 127–140.

    Google Scholar 

  • Frazier, J. G., I. Goodbody & C. Ruckdeschel, 1991. Epizoan communities on marine turtles. 2. Tunicates. Bull. mar. Sci. 48: 763–765.

    Google Scholar 

  • Frazier, J. G., J. E. Winston & C. Ruckdeschel, 1992. Epizoan communities on marine turtles. 3. Bryozoa. Bull. mar. Sci. 52: 1–8.

    Google Scholar 

  • Furman, E. R., A. B. Yule & D. J. Crisp, 1989. Gene flow between populations of Balanus improvisus Darwin (Cirripedia) in British estuaries. Sci. mar. 53: 465–472.

    Google Scholar 

  • Gallardo, M. H. & J. I. Carrasco, 1996. Genetic cohesiveness among populations of Concholepas concholepas (Gastropoda, Muricidae) in southern Chile. J. exp. mar. Biol. Ecol. 197: 237–249.

    Google Scholar 

  • Garcia de Leon, F. J., L. Chikhi & F. Bonhomme, 1997. Microsatellite polymorphism and population subdivision in natural populations of European sea bass Dicentrarchus labrax (Linnaeus, 1758). Mol. Ecol. 6: 51–62.

    Google Scholar 

  • Garthwaite, R. L., C. J. Berg & J. Harrigan, 1989. Population genetics of the common squid Loligo pealei Le Seur, 1821, from Cape Cod to Cape Hatteras. Biol. Bull. 177: 287–294.

    Google Scholar 

  • Grant, W. S., 1983. Population genetics of krill and comparison with other marine organisms. Polar Res. 4: 246–266.

    Google Scholar 

  • Grant, W. S. & F. M. Da Silva-Tatley, 1997. Lack of genetically subdivided population structure in Bullia digitalis a South African gastropod with lecithotrophic development. Mar. Biol. 129: 123–137.

    Google Scholar 

  • Greenberg, N., R. L. Garthwaite & D. C. Potts, 1996. Allozyme and morphological evidence for a newly introduced species of Aurelia in San Francisco Bay, California. Mar. Biol. 125: 401–410.

    Google Scholar 

  • Grosberg, R. K., 1987. Limited dispersal and proximity dependent mating success in the colonial ascidian Botryllus schlosseri. Evolution 41: 130–142.

    Google Scholar 

  • Grosberg, R. K., 1991. Sperm-mediated gene flow and the genetic structure of a population of the colonial ascidian Botryllus schlosseri. Evolution 45: 130–142.

    Google Scholar 

  • Grosberg, R. K., 1992. For adults only? Supply side ecology and the history of larval biology. Trends Ecol. Evol. 7: 130–133.

    Google Scholar 

  • Hansen, T. A., 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6: 193–207.

    Google Scholar 

  • Harding, G. C., E. L. Kenchington, C. J. Bird, D. S. Pezzack & D. C. Landry, 1997. Genetic relationships among subpopulations of the American lobster (Homarus americanus) as revealed by random amplified polymorphic DNA. Can. J. Fish. aquat. Sci. 54: 1762–1771.

    Google Scholar 

  • Harms, J., 1990. Marine plastic litter as an artificial hard bottom fouling ground. Helg. Meer. 44: 503–506.

    Google Scholar 

  • Havenhand, J. N., 1991. Fertilisation and the potential for dispersal of gametes and larvae in the solitary ascidian Ascidia mentula. Ophelia 33: 1–15.

    Google Scholar 

  • Heipel, D. A., J. D. D. Bishop, A. R. Brand & J. P. Thorpe, 1998. Population genetic differentiation of the great scallop Pecten maximus in western Britain investigated by randomly amplified polymorphic DNA. Mar. Ecol. Prog. Ser. 162: 163–171.

    Google Scholar 

  • Heist, E. J. & J. R. Gold, 1999. Microsatellite DNA variation in sandbar sharks (Carcharhinus plumbeus) from the Gulf of Mexico and mid-Atlantic Bight. Copeia 1999: 182–186

  • Helmuth, B., R. R. Veit & R. Holberton, 1994. Long-distance dispersal of a subantartic brooding bivalve (Gaimardia trapesina) by kelp-rafting. Mar. Biol. 120: 421–426.

    Google Scholar 

  • Higa, T., 1991. Bioactive phenolics and related compounds. Bioorg. mar. Chem. 4: 33–90.

    Google Scholar 

  • Higa, T. et al., 1992. Miyakolide: a bryostain like macrolide from a sponge, Polyfibrospongia sp. J. am. chem. Soc. 114: 7587–7588.

    Google Scholar 

  • Highsmith, R. C., 1985. Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Mar. Ecol. Prog. Ser. 25: 169–175.

    Google Scholar 

  • Hochberg, E. G., M. Nixon & R. B. Toll, 1992. Octopoda. Smiths. Contr. Zool. 513: 213–280.

    Google Scholar 

  • Hunt, A. & D. J. Ayre, 1989. Population structure in the sexually reproducing sea anemone Oulactis muscosa. Mar. Biol. 102: 537–544.

    Google Scholar 

  • Hurst, C. D. & D. O. F. Skibinski, 1995. Comparison of allozyme and mitochondrial DNA spatial differentiation in the limpet Patella vulgata. Mar. Biol. 122: 257–263.

    Google Scholar 

  • Ingolfsson, A., 1995. Floating clumps of seaweed around Iceland: natural microcosms and a means of dispersal for shore fauna. Mar. Biol 122: 13–21.

    Google Scholar 

  • Isaksson, A., 1988. Salmon ranching: a world review. Aquaculture 75: 1–33.

    Google Scholar 

  • Izuka, T., S. Segawa & T. Okutani, 1996. Biochemical study of the population heterogeneity and distribution of the oval squid Sepioteuthis lessoniana complex in southwestern Japan. Am. malacol. Bull. 12: 129–135.

    Google Scholar 

  • Izuka, T., S. Segawa, T. Okutani & K. Namuchi, 1994. Evidence on the existence of three species of the oval squid Sepioteuthis lessoniana complex in Ishigaki Islands, Okinawa, south west Japan. Jap. J. Malacol. 53: 217–228.

    Google Scholar 

  • Jablonski, D. & R. A. Lutz, 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biol. Rev. 58: 21–89.

    Google Scholar 

  • Jane, P., P. Berrebi & 0. Guelorget, 1988. Genetic and morphological variability of five populations of the clam Ruditapes decussatus (Mollusca: Bivalvia). Oceanol. Acta 11: 401–407.

    Google Scholar 

  • Jokiel, P. L., 1989. Rafting of reef corals and other organisms at Kwajalein Atoll. Mar. Biol 101: 483–493.

    Google Scholar 

  • Jorstad, K. E. F. E., 1999. Population genetic structure of lobster (Homarus gammarus) in Norway, and implications for enhancement and sea-ranching operation. Aquaculture 173: 447.

    Google Scholar 

  • Kang, Y. J., Y. H. Kim, Y. K. Hong, J. Y. Park & K. Y. Park, 1996. A population genetic analysis of the common squid, Todarodes pacificus Steenstrup in the Korean waters. J. korean Fish. Soc. 29: 320–331.

    Google Scholar 

  • Karl, S. A. & J. C. Avise, 1992. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science 256: 100–102.

    Google Scholar 

  • Katugin, 0. N., 1995. Genetic differentiation in Berryteuthis magister from the North Pacific. In Aiken, D. E., S. L. Waddy & G. Y. Conan (eds), Shellfish Life Histories and Shell-Fishery Models. ICES, Copenhagen: 459–467.

    Google Scholar 

  • Kimura, M. & G. H. Weiss, 1964. The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49: 561–576.

    Google Scholar 

  • King, T. L., R. Ward & E. G. Zimmerman, 1994. Population structure of eastern oysters (Crassostrea virginica) inhabiting the Laguna Madre, Texas and adjacent bay systems. Can. J. Fish. aquat. Sci. 51: 215–222.

    Google Scholar 

  • Klautau, M., C. A. M. Russo, C. Lazoski, N. Boury-Esnault, J. P. Thorpe & A. M. Solé-Cava, 1999. Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution (in press).

  • Knowlton, N., 1993. Sibling species in the sea. Ann. Rev. Ecol. Syst. 24: 189–216.

    Google Scholar 

  • Knowlton, N. & B. D. Keller, 1986. Larvae which fall far short of their potential: highly localized recruitment in an alphaeid shrimp with extended larval development. Bull. mar. Sci. 39: 213–223.

    Google Scholar 

  • Koehn, R. K., J. G. Hall, D. J. Innes & A. J. Zera, 1984. Genetic differentiation of Mytilus edulis in eastern North America. Mar. Biol 79: 117–126.

    Google Scholar 

  • Koehn, R. K., F. J. Turano & J. B. Mitton, 1973. Population genetics of marine pelecypods. II. Genetic differences in microhabitats. Evolution 27: 100–105.

    Google Scholar 

  • Kuehl, S. & R. Schneppenheim, 1986. Electrophoretic investigation of genetic variation in two krill species Euphausia superba and E. crvstallorophias (Euphausiidae). Polar Biol. 6: 17–23.

    Google Scholar 

  • Larcson, J. M., V. M. Riccardi, S. W. Calhoun & D. C. Morizot, 1989. Genetic differentiation of bicolor damselfish (Eupomacentrus partitus) populations in the Florida Keys. Mar. Biol. 103: 445–451.

    Google Scholar 

  • Lavery, S. & C. Keenan, 1995. Genetic analyses of crustacean stock structure and stock size. In Courtney, A. J. & M. G. Cosgrove (eds), Proceedings of the Workshop on Spawning Stock Recruitment Relationships. Department of Primary Industries, Brisbane, Australia: 116–121.

    Google Scholar 

  • Lavery, S., C. Moritz & D. R. Fielder, 1995. Changing patterns of population structure and gene flow at different spatial scales in Birgus latro (the coconut crab). Heredity 74: 531–541.

    Google Scholar 

  • Lavery, S., C. Moritz & D. R. Fielder, 1996. Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Mol. Ecol. 5: 557–570.

    Google Scholar 

  • Lavie, B. & E. Nevo, 1981. Genetic diversity in marine molluscs: A test of the niche-width variation hypothesis. Mar. Ecol. 2: 335–342.

    Google Scholar 

  • Lessios, H. A., B. D. Kessing & D. R. Robertson, 1998. Massive gene flow across the world's most potent marine biogeographical barrier. Proc. r. Soc. Lond. B 265: 583–588.

    Google Scholar 

  • Levy, J. A., M. Haimovici & M. Conceição, 1988. Genetic evidences for two species to the genus Eledone (Cephalopoda: Octopodidae) in south Brazil. Comp. Biochem. Physiol. 90B: 275–277.

    Google Scholar 

  • Lewis, R. I. & J. P. Thorpe, 1994a. Are queen scallops, Aequipecten (Chlamys) opercularis (L.), self recruiting? Can. tech. Rep. Fish. aquat. Sci. 1994: 214–221.

    Google Scholar 

  • Lewis, R. I. & J. P. Thorpe, 1994b. Temporal stability of gene frequencies within genetically heterogeneous populations of the queen scallop Aeguipecten (Chlamys) opercularis. Mar. Biol. 121: 117–126.

    Google Scholar 

  • Li, G. & D. Hedgecock, 1996. Mitochondrial DNA variation within and among larval cohorts of Pacific oyster, Crassostrea gigas, detected by PCR-SSCP analysis. J. Shellfish Res. 15: 511–512.

    Google Scholar 

  • Lilly, M., C. Brown, G. Pettit & A. Kraft, 1991. Bryostatin 1: a potential anti leukemic agent for chronic myelomonocytic leukemia. Leukemia 5: 283–287.

    Google Scholar 

  • MacDonald, C. M. & R. Schneppenheim, 1983. Breeding structure and stock identity in the Antarctic krill Euphausia superba Dana. Polar Res. 4: 240–245.

    Google Scholar 

  • MacDonald, C. M., R. Williams & M. Adams, 1986. Genetic variation and population structure of krill (Euphausia superba Dana) from the Prydz Bay region of Antarctic waters. Polar Biol. 6: 233–236.

    Google Scholar 

  • Macleod, J. A. A., J. P. Thorpe & N. A. Duggan, 1995. A biochemical genetic study of queen scallop Chlamys opercularis) stocks in the northern Irish Sea. Mar. Biol. 87: 77–82.

    Google Scholar 

  • Marcus, N. H., 1977. Genetic variation within and between geographically separated populations of the sea urchin Arabacea punctulata. Biol. Bull. 153: 560–570.

    Google Scholar 

  • Matsuoka, N. & Y. Nakamura, 1990. Enzyme variation within the population of the sea urchin Glyptocidaris crenularis from Japanese waters. Comp. Biochem. Physiol 96B: 335–338.

    Google Scholar 

  • Matsuoka, N. & Y. Nakamura, 1991. Genetic distance and protein polymorphism in two sea urchin species of the order Arabacioidea and implications for their evolution. Comp. Biochem. Physiol. 98B: 21–27.

    Google Scholar 

  • Mattoccia, M., G. La Rosa, E. De Mathaeis, M. Cobolli-Sbordoni & V. Sbordoni, 1987. Patterns of genetic variation and differentiation in Mediterranean populations of Penaeus kerathurus (Crustacea: Decapoda). In, Tiews, K. (ed.), Selection, Hybridisation and Genetic Engineering in Aquaculture. ICES, Copenhagen: 131–142.

    Google Scholar 

  • Maynard-Smith, J., 1989. Evolutionary Genetics. Oxford University Press, New York.

    Google Scholar 

  • McMillen-Jackson, A. L., T. M. Bert & P. Steele, 1994. Population genetics of the blue crab Callinectes sapidus: modest population structuring in a background of high gene flow. Mar. Biol. 118: 53–65.

    Google Scholar 

  • Meehan, B. W., 1985. A genetic comparison of Macoma balthica from San Francisco Bay (California) and Coos Bay (Oregon), U.S.A. J. Shellfish Res. 7: 170.

    Google Scholar 

  • Mgaya, Y. D., E. M. Gosling, J. P. Mercer & J. Donlon, 1995. Genetic variation at three polymorphic loci in wild and hatchery stocks of the Abalone, Haliotis tuberculata Linnaeus. Aquaculture 136: 71–80.

    Google Scholar 

  • Minokawa, T., S. Amemiya & N. Matsuoka, 1992. Genetic variation and differentiation in two local Japanese populations of the sea urchin Asthenosoma ijimai: electrophoretic analysis of isozymes. Zool. Sci. 9: 1299.

    Google Scholar 

  • Mitton, J. B., C. J. Berg, Jr. & K. S. Orr, 1989. Population structure, larval dispersal and gene flow in the queen conch, Strombus gigas, of the Caribbean. Biol. Bull. 177: 356–362.

    Google Scholar 

  • Mladenov, P. V., R. M. Allibone & G. P. Wallis, 1997. Genetic differentiation in the New Zealand sea urchin Evechinus chloroticus (Echinodermata: Echinoidea). New Zealand J. mar. Freshwat. Res. 31: 261–269.

    Google Scholar 

  • Monteiro, F. A., A. M. Solé-Cava & J. P. Thorpe, 1997. Extensive genetic divergence between populations of the common intertidal sea anemone Actinia equina from Britain, the Mediterranean and the Cape Verde Islands. Mar. Biol. 129: 425–433.

    Google Scholar 

  • Moraga, D., D. Jollivet & F. Denis, 1994. Genetic differentiation across the west Pacific populations of the hydrothermal vent bivalve Bathymodiolus sp. and the east pacific population of Bathymodiolus thermophilus. Deep Sea Res. 41: 1551–1557.

    Google Scholar 

  • Nevo, E., 1978. Genetic variation in natural populations: patterns and theory. Theor. Pop. Biol. 13: 121–177.

    Google Scholar 

  • Noy, R., B. Lavie & E. Nevo, 1987. The niche-width variation hypothesis revisited: genetic diversity in the marine gastropods Littorina punctata (Ginelin) and L. neritoides (L.). J. exp. mar. Biol. Ecol. 109: 109–116.

    Google Scholar 

  • Olive, P. J. W., 1994. Polychaeta as a world resource: a review of patterns of exploitation as a sea angling bait and the potential for aquaculture based production. Mem. Mus. natn. Hist. nat., Paris 162: 603–610.

    Google Scholar 

  • Olson, S. G., 1996. Curing cancer through aquaculture. Sea Technol. 37: 89–94.

    Google Scholar 

  • O'Reilly, P. & J. M. Wright, 1995. The evolving technology of DNA fingerprinting and its application to fisheries and aquaculture. J. Fish Biol. 47: 29–55.

    Google Scholar 

  • Ovenden, J. R. & D. J. Brasher, 1994. Stock identity of the red (Jasus edwardsii) and green (J. verreauxi) rock lobsters inferred from mitochondrial DNA analysis. In Philips, B. F., J. S. Cobb & J. Kittaka (eds), Spiny Lobster Management. Blackwell, London: 230–249.

    Google Scholar 

  • Pannacciulli, F. G., J. D. D. Bishop & S. J. Hawkins, 1997. Genetic structure of populations of two species of Chthamalus in the north east Atlantic and Mediterranean. Mar. Biol. 128: 73–82.

    Google Scholar 

  • Park, L. K. & P. Moran, 1995. Developments in molecular genetic techniques in fisheries. In Carvalho, G. R. & T. J. Pitcher (eds), Molecular Genetics in Fisheries. Chapman and Hall, London: 1–28.

    Google Scholar 

  • Patarnello, T., L. Bargelloni, V. Varotto & B. Battaglia, 1996. Krill evolution and the Antarctic ocean currents: evidence of vicariant specification as inferred by molecular data. Mar. Biol. 126: 603–608.

    Google Scholar 

  • Patterson, K. R., 1987. Fishy events in the Falklands. New Scientist 1562: 44–48.

    Google Scholar 

  • Patwary, M. U., E. L. Kenchington, C. J. Bird & E. Zouros, 1994. The use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Placopecten magellanicus (Gmellin, 1791). J. Shellfish Res. 13: 547–553.

    Google Scholar 

  • Perrin, M. C., J. P. Thorpe & A.M. Solé-Cava, 1999. Actinia equina: a genetic role model and reproductive enigma. Oceanogr. mar. Biol. ann. Rev. (in press).

  • Pierce, R. W., J. T. Carlton, D. A. Carlton & J. B. Geller, 1997. Ballast water as a vector for tintinnid transport. Mar. Ecol. Prog. Ser. 149: 295–297.

    Google Scholar 

  • Piertney, S. B. & G. R. Carvalho, 1995. Microgeographical genetic differentiation in the intertidal isopod Jaera albifrons. 2. Temporal variation in allele frequencies. J. exp. mar. Biol. Ecol. 188: 277–288.

    Google Scholar 

  • Prince, J. D., T. L. Sellers, W. B. Ford & S. R. Talbot, 1987. Experimental evidence or limited dispersal of haliotid larvae (genus Haliotis; Mollusca: Gastropoda). J. exp. mar. Biol. Ecol. 106: 243–263.

    Google Scholar 

  • Roehner, M., R. Bastrop & K. Juerss, 1996. Colonization of Europe by two American genetic types or species of the genus Marenzelleria (Polychaeta: Spionidae). An electrophoretic analysis of allozymes. Mar. Biol. 127: 277–287.

    Google Scholar 

  • Roper, C. F. E., M. J. Sweeney & C. E. Naun, 1984. FAO species catalogues. Vol 3. Cephalopods of the world. An annotated and illustrated guide to species of interest to fisheries. FAO, Rome.

    Google Scholar 

  • Ruiz, G. M., J. T. Carlton, E. D. Grosholz & A. H. Hines, 1997. Global invasions of marine and estuarine habitats by nonindigenous species: mechanisms, extent and consequences. Am. Zool. 6: 621–632.

    Google Scholar 

  • Russo, C. A. M., A. M. Solé-Cava & J. P. Thorpe, 1994. Population structure and genetic variation in two tropical sea anemones (Cnidaria, Actinidae) with different reproductive strategies. Mar. Biol. 119: 267–276.

    Google Scholar 

  • Ryman, N., 1991. Conservation genetics considerations in fishery management. J. Fish Biol. 39: 211.

    Google Scholar 

  • Ryman, N. & F. Utter, 1987. Population genetics and fishery management. Washington University Press, Seattle, Washington.

    Google Scholar 

  • Saavedra, C., C. Zapata, A. Guerra & G. Alvarez, 1987. Genetic structure of populations of the flat oyster Ostrea edulis) from the north west of the Iberian Peninsula. Inv. Pesq. 51: 225–241.

    Google Scholar 

  • Sabbadin, A., 1978. Genetics of the colonial ascidian Botryllus schlosseri. In Battaglia, B. & J. A. Beardinore (eds), Marine Organisms, Genetics Ecology and Evolution. Plenum Press, New York: 195–207.

    Google Scholar 

  • Schaufelberger, D. E. et al., 1991. The large scale isolation of bryostatin 1 from Bugula neritina following current good manufacturing processes. J. nat. Prod. 54: 1265–1270.

    Google Scholar 

  • Scheltema, R. S., 1986. Long-distance dispersal by planktonic larvae of shoal-water benthic invertebrates among central Pacific islands. Bull. mar. Sci. 39: 241–256.

    Google Scholar 

  • Scheltema, R. S., 1989. Planktonic and non-planktonic development among prosobranch gastropods and its relationship to the geographic range of species. In Ryland, J. S. & P. A. Tyler (eds), Reproduction, Genetics and Distribution of Marine Organisms. Olsen & Olsen, Fredensborg, Denmark: 183–188.

    Google Scholar 

  • Schneppenheim, R. & M. MacDonald, 1983. Population genetics of krill (Euphausia superba. Polar Res. 4: 439.

    Google Scholar 

  • Schuchter, R. L. et al., 1991. Successful treatment of murine melanoma with bryostatin 1. Cancer Res. 51: 682–687.

    Google Scholar 

  • Shaw, P. W., 1997. Polymorphic microsatellite markers in a cephalopod: the veined squid Loligo forbesi. Mol. Ecol. 6: 297–298.

    Google Scholar 

  • Shepherd, S. A. & L. D. Brown, 1993. What is an abalone stock-Implications for the role of refugia in conservation. Can. J. Fish. aquat. Sci. 50: 2001–2009.

    Google Scholar 

  • Shick, J. M. 1991. A Functional Biology of Sea Anemones. Chapman & Hall, London.

    Google Scholar 

  • Siberman, J. D., S. K. Shaver & P. J. Walsh, 1994. Mitochondrial DNA variation in seasonal cohorts of spiny lobster (Panulirus argus) post larvae. Mol. mar. Biol. Biotechnol. 3: 165–170.

    Google Scholar 

  • Skibinski, D. O. F., M. Ahmad & J. A. Beardmore, 1978. Genetic evidence for naturally occurring hybrids between Mytilus edulis and Mytilus galloprovincialis. Evolution 32: 354–364.

    Google Scholar 

  • Slatkin, M., 1981. Estimating levels of gene flow in natural populations. Genetics 99: 323–335.

    Google Scholar 

  • Slatkin, M., 1985. Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16: 393–430.

    Google Scholar 

  • Slatkin, M., 1994. Gene flow and population structure. In Real, L. A. (ed.), Ecological Genetics. Princeton University Press, Princeton, New Jersey: 3–17.

    Google Scholar 

  • Slatkin, M., 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.

    Google Scholar 

  • Smith, J. M. B., P. Rudall & P. E. Keage, 1989. Driftwood on Heard Island. Polar Rec. 25: 223–228.

    Google Scholar 

  • Smith, P. J., P. E. Roberts & R. J. Hurst, 1981. Evidence for two species of arrow squid in the New Zealand fishery. New Zealand J. mar. Freshwat. Res. 15: 247–253.

    Google Scholar 

  • Solé-Cava, A. M. & J. P. Thorpe, 1991. High levels of genetic variation in natural populations of marine lower invertebrates. Biol. J. linn. Soc. 44: 65–80.

    Google Scholar 

  • Solé-Cava, A. M. & J. P. Thorpe, 1992. Genetic divergence between colour morphs in populations of the common intertidal sea anemones Actinia equina and A. prasina (Anthozoa: Actiniaria) in the Isle of Man. Mar. Biol. 112: 243–252.

    Google Scholar 

  • Solé-Cava, A. M. & J. P. Thorpe, 1994. Evolutionary genetics of marine sponges. In Van Soest, R. W. M., T. M. G. Van Kempen & J. C. Braekman (eds), Sponges in Time and Space. A. A. Balkema, Rotterdam: 55–63.

    Google Scholar 

  • Staton, J. L. & D. L. Felder, 1995. Genetic variation in populations of the ghost shrimp genus Callichirus (Crustacea, Decepoda, Thalassinoidea) in the Western Atlantic and Gulf of Mexico. Bull. mar. Sci. 56: 523–536.

    Google Scholar 

  • Stepien, C. A., 1995. Population genetic divergence and geographic patterns from DNA sequences: examples from marine and freshwater fishes. Am. Fish. Soc. Symp. 17: 263–287.

    Google Scholar 

  • Stiles, S., J. Choromanski, D. Schweitzer & Q. Z. Xue, 1996. Preliminary investigations of genetics and breeding of the bay scallop, Argopecten irradians. J. Shellfish Res. 15: 461.

    Google Scholar 

  • Strathmann, R. R., 1980. Why does a larva swim so long? Paleobiology 6: 373–376.

    Google Scholar 

  • Strathmann, R. R., 1985. Feeding and nonfeeding larval development and life history evolution in marine invertebrates. Ann. Rev. Ecol. Syst. 16: 339–361.

    Google Scholar 

  • Strathmann, R. R., 1990. Why life histories evolve differently in the sea. Am. Zool. 30: 197–207.

    Google Scholar 

  • Taggart, J. B. & A. Ferguson, 1990. Minisatellite DNA fingerprints of salmonid fishes. Anim. Genet. 21: 377–389.

    Google Scholar 

  • Taggart, J. B., E. Verspoor, P. T. Galvin, P. Moran & A. Ferguson, 1995. A minisatellite DNA marker for discriminating between European and North-American Atlantic salmon (Salmo salar). Can. J. Fish. aquat. Sci. 52: 2305–2311.

    Google Scholar 

  • Thompson, A. P., J. R. Hanley & M. S. Johnson, 1996. Genetic structure of the western rock lobster Panulirus cygnus, with the benefit of hindsight. Aust. J. mar. freshwat. Res. 47: 889–896.

    Google Scholar 

  • Thorpe, J. P., J. N. Havenhand & K. R. Patterson, 1986. Report of the University of Liverpool (Department of Marine Biology) to the Falkland Islands Development Corporation on stock and species identities of Patagonian Shelf Illex. Falkland Islands Development Corporation, Port Stanley, Falkland Islands.

    Google Scholar 

  • Thorpe, J. P. & R. D. M. Nash, 1993. Other invertebrates used as food. In Macrae, R. R. Robinson & M. Sadler (eds), Encyclopaedia of Food Science, Food Technology and Nutrition. Academic Press, London: 2898–2902.

    Google Scholar 

  • Thorpe, J. P. & A. M. Solé-Cava, 1994. The use of allozyme electrophoresis in invertebrate systematics. Zool. Scr. 23: 3–18.

    Google Scholar 

  • Todd, C. D., 1985. Settlement timing hypothesis: a reply to Grant and Williamson. Mar. Ecol. Prog. Ser. 23: 197–202.

    Google Scholar 

  • Todd, C. D., J. N. Havenhand & J. P. Thorpe, 1988. Genetic differentiation, pelagic larval transport and gene flow between local populations of the intertidal marine mollusc Adalaria proxima (Alder & Hancock). Funct. Ecol. 2: 441–451.

    Google Scholar 

  • Todd, C. D., W. J. Lambert & J. P. Thorpe, 1998. The genetic structure of intertidal populations of two species of nudibranch molluscs with planktotrophic and pelagic lecithotrophic larval stages: are pelagic larvae 'for' dispersal? J. exp. mar. Biol. Ecol. 228: 1–28.

    Google Scholar 

  • Utter, F. M., 1995. Perspective of molecular genetics and fisheries into the 21st century. In Carvalho, G. R. & T. J. I. Pitcher (eds), Molecular Genetics in Fisheries. Chapman and Hall, London: 105–109.

    Google Scholar 

  • Utter, F. M., P. Aebersold & G. Winans, 1987. Interpreting genetic variation detected by electrophoresis. In Ryman, N. & F. Utter (eds), Population Genetics and Fishery Management. University of Washington Press, Seattle: 21–46.

    Google Scholar 

  • Valentine, J. W. & F. J. Ayala, 1978. Adaptive strategies in the sea.In Battaglia, B. & J. A. Beardmore (eds), Marine Organisms: Genetics, Ecology and Evolution. Plenum Press, New York: 323–345.

    Google Scholar 

  • Volpe, J. P. & M. M. Ferguson, 1996. Molecular genetic examination of the polymorphic Arctic charr Salvelinus alpinus of Thingvallavatn, Iceland. Mol. Ecol. 5: 763–772.

    Google Scholar 

  • Voss, G. L. 1973. Cephalopod resources of the world. FAO, Rome.

    Google Scholar 

  • Voss, G. L., 1983. Review of cephalopod fishery biology. Mem. natl. Mus. Vic. 44: 229–241.

    Google Scholar 

  • Ward, R. D., 1989. Molecular population genetics of marine organisms.In Ryland, J. S. & P. A. Tyler (eds), Reproduction, Genetics and Distribution of Marine Organisms. Olsen and Olsen, Fredensborg, Denmark: 235–249.

    Google Scholar 

  • Ward, R. D., N. G. Elliott, B. H. Innes, A. J. Smolenski & P. M. Grewe, 1997. Global population structure of yellowfin tuna, Thunnus albacares, inferred from allozyme and mitochondrial DNA variation. Fish. Bull. 95: 566–575.

    Google Scholar 

  • Ward, R. D. & P. M. Grewe, 1995. Appraisal of molecular genetic techniques in fisheries. In Carvalho, R. & T. J. Pitcher (eds), Molecular Genetics in Fisheries. Chapman and Hall, London: 29–54.

    Google Scholar 

  • Watts, P. C., J. P. Thorpe & P. D. Taylor, 1998. Natural and anthropogeneic dispersal mechanisms in cheilostomatid Bryozoa. Phil. Trans. r. Soc., Lond. B 353: 453–464.

    Google Scholar 

  • Watts, R. J., M. S. Johnson & R. Black, 1990. Effects of recruitment on genetic patchiness in the urchin Echinometra mathaei in Western Australia. Mar. Biol. 105: 145–151.

    Google Scholar 

  • Winston, J. E., 1982. Drift plastics-an expanding niche for a marine invertebrate? Mar. Pollut. Bull. 13: 348–351.

    Google Scholar 

  • Worcester, S. E., 1994. Adult rafting versus larval swimming: dispersal and recruitment of a botryllid ascidian on eelgrass. Mar. Biol. 121: 309–317.

    Google Scholar 

  • Wright, J. M. & P. Bentzen, 1995. Microsatellites: genetic markers for the future. In Carvalho, G. R. (ed.), Molecular Genetics in Fisheries. Chapman & Hall, London: 117–121.

    Google Scholar 

  • Yeatman, J. & J. A. H. Benzie, 1994. Genetic structure and distribution of Photololigo spp. in Australia. Mar. Biol. 118: 79–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorpe, J.P., Solé-Cava, A.M. & Watts, P.C. Exploited marine invertebrates: genetics and fisheries. Hydrobiologia 420, 165–184 (2000). https://doi.org/10.1023/A:1003987117508

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003987117508

Navigation