Skip to main content
Log in

An episode of accelerated amino acid change in Drosophila esterase-6 associated with a change in physiological function

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In most lineages of the subgenus Sophophora esterase-6 is a homodimeric haemolymph protein. In the melanogaster subgroup of species it has become a monomer which is mainly expressed in the male sperm ejaculatory duct. Our analyses of esterase-6 sequences from three melanogaster subgroup species and two close relatives reveal a brief period of accelerated amino acid sequence change during the transition between the ancestral and derived states. In this period of 2–6Myr the ratio of replacement to silent site substitutions (0.51) is about three times higher than the values in other lineages of the phylogeny. There are about 50 more replacements in this period than would be predicted from the ratios of replacement to silent site substitutions found elsewhere in the phylogeny. Modelling on the known structure of a related acetylcholinesterase suggests that an unusually high proportion of the replacements in the transitional branch are non-conservative changes on the protein surface. Up to half the accelerated replacement rate can be accounted for by clusters of changes to the face of the molecule containing the opening of the active site gorge. This includes changes in and around regions homologous to peripheral substrate binding sites in acetylcholinesterase. There are also three changes in glycosylation status. One region predicted to lie on the protein surface which becomes markedly more hydrophilic is proposed to be the ancestral dimerisation site that is lost in the transitional branch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguade, M., 1999. Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila. Genetics 152: 543–551.

    PubMed  CAS  Google Scholar 

  • Arnason, E. & G.K. Chambers, 1987. Macromolecular interaction and the electrophoretic mobility of esterase-5 from Drosophila pseudoobscura. Biochem. Genet. 25: 287–307.

    Article  PubMed  CAS  Google Scholar 

  • Axelsen, P.H., M. Harel, I. Silman & J.L. Sussman, 1994. Structure and dynamics of the active site gorge of acetylcholinesterase: synergistic use of molecular dynamics simulation and X-ray crystallography. Protein Sci. 3: 188–197.

    Article  PubMed  CAS  Google Scholar 

  • Benach, J., S. Atrian, R. Gonzalez-Duarte & R. Ladenstein, 1998. The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 Åresolution. J. Mol. Biol. 282: 383–399.

    Article  PubMed  CAS  Google Scholar 

  • Bordo, D. & P. Argos, 1991. Suggestions for 'safe’ residue substitutions in site-directed mutagenesis. J. Mol. Biol. 217: 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Brady, J.P., R.C. Richmond & J.G. Oakeshott, 1990. Cloning of the esterase-5 locus from Drosophila pseudoobscura and comparison with its homologue in Drosophila melanogaster. Mol. Biol. Evol. 7: 525–546.

    PubMed  CAS  Google Scholar 

  • Civetta, A. & R.S. Singh, 1998. Sex-related genes, directional sexual selection and speciation. Mol. Biol. Evol. 15: 901–909.

    PubMed  CAS  Google Scholar 

  • Claudianos, C., E. Crone, C. Coppin, R.J. Russell & J.G. Oakeshott, 2000. A genomics perspective on mutant aliesterases and metabolic resistance to organophosphates, in Pesticide Science: Pesticide Resistance, edited by J. Marshall Clark & I. Yamaguchi. Oxford Press, Washington (in press).

    Google Scholar 

  • Collet, C., K.M. Nielsen, R.J. Russell, M. Karl, J.G. Oakeshott & R.C. Richmond, 1990. Molecular analysis of duplicated esterase genes in Drosophila melanogaster. Mol. Biol. Evol. 7: 9–28.

    PubMed  CAS  Google Scholar 

  • Cooke, P.H. & J.G. Oakeshott, 1989. Amino acid polymorphisms for esterase-6 in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 86: 1426–1430.

    Article  PubMed  CAS  Google Scholar 

  • Cygler, M., J.D. Schrag, J.L. Sussman, M. Harel, I. Silman, M.K. Gentry & B.P. Doctor, 1993. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases and related proteins. Protein. Sci. 2: 366–382.

    Article  PubMed  CAS  Google Scholar 

  • Devereux, J., P. Haeberli & O. Smithies, 1984. A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12: 387–395.

    PubMed  CAS  Google Scholar 

  • Dumancic, M.M., J.G. Oakeshott, R.J. Russell & M.J. Healy, 1997. Characterisation of the EstP protein in Drosophila melanogaster and its conservation in Drosophilids. Biochem. Genet. 35: 251–271.

    Article  PubMed  CAS  Google Scholar 

  • East, P., A. Graham & G. Whitington, 1990. Molecular isolation and preliminary characterisation of a duplicated esterase locus in Drosophila buzzatii, pp. 389–406 in Ecological and Evolutionary Genetics of Drosophila, edited by J.S.F. Barker, W.T. Starmer & R.J. MacIntyre. Plenum Press, New York.

    Google Scholar 

  • Gnatt, A., Y. Lowenstein, A. Yaron, M. Schwarz & H. Soreq, 1994. Site-directed mutagenesis of active site residues reveals plasticity of human butyrylcholinesterase in substrate and inhibitor interactions. J. Neurochem. 62: 749–755.

    Article  PubMed  CAS  Google Scholar 

  • Golding, G.B. & A.M. Dean, 1998. The structural basis of molecular adaptation. Mol. Biol. Evol. 15: 355–369.

    PubMed  CAS  Google Scholar 

  • Healy, M.J., M.M. Dumancic, A. Cao & J.G. Oakeshott, 1996. Localization of sequences regulating ancestral and acquired sites of esterase-6 activity in Drosophila melanogaster. Mol. Biol. Evol. 13: 784–797.

    PubMed  CAS  Google Scholar 

  • Heikinheimo, P., A. Goldman, C. Jeffries & D.L. Ollis, 1999. Of barn owls and bankers: a lush variety of #x03B1;/β hydrolases. Structure 7: 141–146.

    Article  Google Scholar 

  • Kabsch, W. & C. Sander, 1983. Dictionary of protein secondary structure. Pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22: 2577–2637.

    CAS  Google Scholar 

  • Karotam, J., A.C. Delves & J.G. Oakeshott, 1993. Conservation and change in structural and 5#x2032; flanking sequences of esterase-6 in sibling Drosophila species. Genetica 88: 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Keith, T.P., 1983. Frequency distribution of esterase 5 alleles in two populations of Drosophila pseudoobscura. Genetics 105: 136–155.

    Google Scholar 

  • Korochkin, L.I., 1995. Cloning, expression, and regulation of tissuespecific genes in Drosophila. Genetica 31: 1029–1042.

    CAS  Google Scholar 

  • Li, W-H & Graur, D., 1991. Fundamentals of Molecular Evolution. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Lunday A.J. & J.L. Farmer, 1983. Tissue localization of esterase-5 in Drosophila pseudoobscura. Biochem. Genet. 21: 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J.C. & F.H. Arnold, 1996. Directed evolution of a paranitrobenzyl esterase for aqueous-organic solvents. Nature Biotech. 14: 458–467.

    Article  CAS  Google Scholar 

  • Moore, J.C., H.M. Jin, O. Kirchner & F.H. Arnold, 1997. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J. Mol. Biol. 272: 336–347.

    Article  PubMed  CAS  Google Scholar 

  • Myers, M.A., M.J. Healy & J.G. Oakeshott, 1996. Mutational analysis of N-linked glycosylation of esterase-6 in Drosophila melanogaster. Biochem. Genet. 34: 201–218.

    PubMed  CAS  Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nei, M. & T. Gojobori, 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418–426.

    PubMed  CAS  Google Scholar 

  • Oakeshott, J.G., T.M Boyce, R.J. Russell & M.J. Healy, 1995. Molecular insights into the evolution of an enzyme; esterase-6 in Drosophila. Trends Ecol. Evol. 10: 103–110.

    Article  Google Scholar 

  • Oakeshott, J.G., C. Claudianos, R.J. Russell & G.C. Robin, 1999. Carboxyl/cholinesterases: a case study of the evolution of a successful multigene family. BioEssays 21: 1031–1042.

    Article  PubMed  CAS  Google Scholar 

  • Oakeshott, J.G., G.K. Chambers, J.B. Gibson & D.A. Willcocks, 1981. Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies in Drosophila melanogaster. Heredity 47: 385–396.

    PubMed  CAS  Google Scholar 

  • Oakeshott, J.G., C. Collet, R.W. Phillis, C.M. Nielsen, R.J Russell, G.K. Chambers, V. Ross & R.C Richmond, 1987. Molecular cloning and characterisation of esterase-6, a serine hydrolase of Drosophila. Proc. Natl. Acad. Sci. USA 84: 3359–3363.

    Article  PubMed  CAS  Google Scholar 

  • Oakeshott, J.G., M.J. Healy & A.Y. Game, 1990. Regulatory evolution of β-carboxyl esterases in Drosophila, pp. 359–387 in Ecological and Evolutionary Genetics of Drosophila, edited by J.S.F. Barker, W.T Starmer & R.J. MacIntyre. Plenum Press, New York.

    Google Scholar 

  • Oakeshott, J.G., E.A. van Papenrecht, T.M. Boyce, M.J. Healy & R.J. Russell, 1993. Evolutionary genetics of Drosophila esterases. Genetica 90: 239–268.

    Article  PubMed  CAS  Google Scholar 

  • Ollis, D.L., E. Cheah, M. Cygler et al. (10 co-authors), 1992. The #x03B1;/β hydrolase fold. Protein Eng. 5: 197–211.

    PubMed  CAS  Google Scholar 

  • Pennisi, E., 1999. Gaining new insight into the molecular basis of evolution. Science 285: 654–655.

    Article  PubMed  CAS  Google Scholar 

  • Powell, J.R. & R. De Salle, 1995. Drosophila molecular phylogenies and their uses, pp. 88–137 in Evolutionary Biology, Vol. 28, edited by M.K. Hecht. Plenum Press, New York.

    Google Scholar 

  • Robin, G.C. de Q., R.J. Russell, D.J. Cutler & J.G. Oakeshott, 2000. The evolution of an β-esterase pseudogene inactivated in the Drosophila melanogaster lineage. Mol. Biol. Evol. 17: 563–575.

    PubMed  CAS  Google Scholar 

  • Rozas, J. & R. Rozas, 1999. DnaSP version 3: an integrated program for molecular evolution analysis. Bioinformatics 15: 174–175.

    Article  PubMed  CAS  Google Scholar 

  • Saad, M., A.Y. Game, M.J. Healy & J.G. Oakeshott, 1994. Associations of esterase-6 allozyme and activity variation with reproductive fitness in Drosophila melanogaster. Genetica 94: 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Sander, C. & R. Schneider, 1991. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins: Struct. Funct. Genet. 9: 56–68.

    Article  CAS  Google Scholar 

  • Sayle R.A. & E.J. Milner-White, 1995. RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20: 374–376.

    Article  PubMed  CAS  Google Scholar 

  • Spiller, B., A. Gershenson, F.H. Arnold & R.C. Stevens, 1999. A structural view of evolutionary divergence. Proc. Natl. Acad. Sci. USA 96: 12305–12310.

    Article  PubMed  CAS  Google Scholar 

  • Sussman, J.L., M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker & I. Silman, 1991. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholinebinding protein. Science 253: 872–879.

    PubMed  CAS  Google Scholar 

  • Swofford, D. L., 1998. PAUP: Phylogenetic Analysis Using Parsimony. Champaign, Illinois Natural History Survey.

    Google Scholar 

  • Tajima, F., 1993. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135: 599–607.

    PubMed  CAS  Google Scholar 

  • Taylor, P. & Z. Radic, 1994. The cholinesterases: from genes to proteins. Annu. Rev. Pharmacol. Toxicol. 34: 281–320.

    Article  PubMed  CAS  Google Scholar 

  • Tamarina, N.A., M.Z. Ludwig & R.C. Richmond, 1997. Divergent and conserved features in the spatial expression of the Drosophila pseudoobscura esterase-5B gene and the esterase-6 gene of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94: 7735–7741.

    Article  PubMed  CAS  Google Scholar 

  • Throckmorton, L.H., 1975. The phylogeny, ecology and geography of Drosophila, pp. 421–469 in Handbook of Genetics. Vol. 3, edited by R.C. King. Plenum Press, New York.

    Google Scholar 

  • Weise, C., H.-J. Kreienkamp, R. Raba, A. Pedak, A. Aaciksaar & F. Hucho, 1990. Anionic subsites of the acetylcholinesterase from Torpedo californica: affinity labelling with the cationic reagent N,N-dimethyl-2-phenyl-aziridinium. EMBO J. 9: 3885–3888.

    PubMed  CAS  Google Scholar 

  • White, M.M., S.D. Moore & R.C. Richmond, 1988. Studies of esterase-6 in Drosophila melanogaster. XVIII. Biochemical differences between the slow and fast allozymes. Mol. Biol. Evol. 5: 41–62.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oakeshott, J., Papenrecht, E.v., Claudianos, C. et al. An episode of accelerated amino acid change in Drosophila esterase-6 associated with a change in physiological function. Genetica 110, 231–244 (2000). https://doi.org/10.1023/A:1012727814167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012727814167

Navigation