Skip to main content
Log in

Genetic variance in temperature dependent adult size deriving from physiological genetic variation at temperature boundaries

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

An increase in genetic variation in body size has often been observed under stress; an increase in dominance variance and interaction variance as well as in additive genetic variance has been reported. The increase in genetic variation must be caused by physiological mechanisms that are specific to adverse environments. A model is proposed to explain the occurrence of an increase in genetic variation in body size in Drosophila at extreme temperatures. The model has parameters specific to the low- and high-temperature regions of the viable range. Additive genetic variation in the boundary temperatures leads to a marked increase in additive genetic variation in development rate and body size at extreme temperatures. Additive genetic variation in the temperature sensitivity in the low- and high-temperature regions adds non-additive genetic variation. Development rate shows patterns in additive genetic variation that differ from the patterns of genetic variation in body size; therefore, the genetic correlation between development rate and body size changes sign repeatedly as a function of temperature. The existence of dominance in the genetic variation in the boundary temperatures or in the low- and high-temperature sensitivities leads to a higher total genetic variance due to higher dominance and interaction variance, for both development rate and body size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, J.S.F. & R.A. Krebs, 1995. Genetic variation and plasticity of thorax length and wing length in Drosophila aldrichi and D. buzzatii. J. Evol. Biol. 8: 869-709.

    Article  Google Scholar 

  • Blows, M.W. & A.A. Hoffmann, 1996. Evidence for an association between nonadditive genetic variation and extreme expression of a trait. Am. Naturalist 148: 576-587.

    Article  Google Scholar 

  • Blows, M.W. & M.B. Sokolowski, 1995. The expression of additive and nonadditive genetic variation under stress. Genetics 140: 1149-1159.

    PubMed  CAS  Google Scholar 

  • Bubliy, O.A., V. Loeschcke & A.G. Imasheva, 2001. Genetic variation of morphological traits in Drosophila melanogaster under poor nutrition: isofemale lines and offspring-parent regression. Heredity 86: 363-369.

    Article  PubMed  CAS  Google Scholar 

  • David, J.R. & M.F. Clavel, 1967. Influence de la température d'élevage sur la mortalité larvo-nymphale et la durée de développement de la Drosophile. Nat. Can. 94: 209-219.

    Google Scholar 

  • Ferrari, J.A. 1987. Components of genetic variation associated with second and third chromosome gene arrangements in Drosophila melanogaster. Genetics 116: 87-97.

    Google Scholar 

  • Gibert, P. & G. de Jong, 2001. Temperature dependence of development rate and adult size in Drosophila species: biophysical parameters. J. Evol. Biol. 14: 267-276.

    Article  Google Scholar 

  • Gilchrist, S. & L. Partridge, 1999. A comparison of the genetic basis of wing size divergence in three parallel body size clines in Drosophila melanogaster. Genetics 153: 1775-1787.

    PubMed  CAS  Google Scholar 

  • van der Have, T.M. & G. de Jong, 1996. Adult size in ectotherms: temperature effects on growth and differentiation. J. Theo. Biol. 183: 329-340.

    Article  Google Scholar 

  • Hochachka, P.W. & G.N. Somero, 1984. Biochemical Adaptation. Princeton University Press, Princeton.

    Google Scholar 

  • Hoffman, A.A. & J. Merilä, 1999. Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol. Evol. 14: 96-101.

    Article  Google Scholar 

  • Hoffmann, A.A. & P.A. Parsons, 1991. Evolutionary Genetics and Environmental Stress. Oxford University Press.

  • Imasheva, A.G., 1999. Environmental stress and genetic variation in animal populations. Russian J. Genet. 35: 343-351.

    CAS  Google Scholar 

  • Imasheva, A.G., D.V. Bosenko & O.A. Bubli, 1999. Variation in morphological traits of Drosophila melanogaster (fruit fly) under nutritional stress. Heredity 82: 187-192.

    Article  PubMed  Google Scholar 

  • Imasheva, A.G., V. Loeschcke, L.A. Zhivotovsky & O.E. Lazebny, 1998. Stress temperatures and quantitative variation in Drosophila melanogaster. Heredity 81: 246-253.

    Article  PubMed  Google Scholar 

  • de Jong, G., 1990. Quantitative genetics of reaction norms. J. Evol. Biol. 3: 447-468.

    Article  Google Scholar 

  • de Jong, G. & S. Gavrilets, 2000. Maintenance of genetic variation in phenotypic plasticity: the role of environmental variation. Genet. Res. 76: 295-304.

    Article  PubMed  CAS  Google Scholar 

  • Karan, D., J.P. Morin, B. Moreteau & J.R. David, 1998. Body size and developmental temperature in Drosophila melanogaster: analysis of body weight reaction norm. J. thermal Biol. 23: 301-309.

    Article  Google Scholar 

  • Karan, D., J.P. Morin, E. Gravot, B. Moreteau & J.R. David, 1999. Body size reaction norms in Drosophila melanogaster: temporal stability and genetic architecture in a natural population. Genet. Select. Evol. 31: 491-508.

    Google Scholar 

  • Kojima, K.-I., 1959. Role of epistasis and overdominance in stability of equilibria with selection. Proc. Nat. Acad. Sci. USA 45: 984-989.

    Article  PubMed  CAS  Google Scholar 

  • Mather, K. & J.L. Jinks, 1971. Biometrical Genetics. 2nd edn, Chapman and Hall.

  • de Moed, G.H., G. de Jong & W. Scharloo, 1997. Environmental effects on body size variation in Drosophila melanogaster and its cellular basis. Genet. Res. 70: 35-43.

    Article  PubMed  CAS  Google Scholar 

  • Noach, E.J.K., G. de Jong & W. Scharloo, 1996. Phenotypic plasticity in two populations of Drosophila melanogaster. J. Evol. Biol. 9: 831-844.

    Article  Google Scholar 

  • Nijhout, H.F. & S.M. Paulsen, 1997. Developmental models and polygenic characters. Am. Naturalist 149: 394-405.

    Article  Google Scholar 

  • Pál, C., 1998 Plasticity, memory and the adaptive landscape of the genotype. Proc. Royal Soc. London Series B 265: 1319-1323.

    Article  Google Scholar 

  • Roff, D.A., 2000. Trade-offs between growth and reproduction: an analysis of the quantitative genetic evidence. J. Evol. Biol. 13: 434-445.

    Article  Google Scholar 

  • Roff, D., 1981. On being the right size. Am. Naturalist 118: 405-422.

    Article  Google Scholar 

  • Schoolfield, R.M., P.J.H. Sharpe & C.E. Magnuson, 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theo. Biol. 88: 719-731.

    Article  CAS  Google Scholar 

  • Sharpe, P.J.H. & D.W. DeMichele, 1977, Reaction kinetics of poikilotherm development. J. Theo. Biol. 64: 649-670.

    Article  CAS  Google Scholar 

  • Wagner, T. L., H. Wu, P.J.H. Sharpe, R.M. Schoolfield & R.N. Coulson, 1984. Modeling insect development rates: a literature review and application of a biophysical model. Annals Entomol. Soc. Am. 77: 208-225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, G., Imasheva, A. Genetic variance in temperature dependent adult size deriving from physiological genetic variation at temperature boundaries. Genetica 110, 195–207 (2000). https://doi.org/10.1023/A:1017974618477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017974618477

Navigation