Skip to main content
Log in

Searching for a Common Centromeric Structural Motif: Drosophila Centromeric Satellite DNAs Show Propensity to form Telomeric-Like Unusual DNA Structures

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The molecular basis of centromere formation in a particular chromosomal region is not yet understood. In higher eukaryotes, no specific DNA sequence is required for the assembly of the kinetochore, but similar centromeric chromatins are formed on different centromere DNA sequences. Although epigenesis has been proposed as the main mechanism for centromere specification, DNA recognition must also play a role. Through the analysis of Drosophilacentromeric DNA sequences, we found that dodeca satellite and 18HT satellite are able to form unusual DNA structures similar to those formed by telomeric sequences. These findings suggest the existence of a common centromeric structural DNA motif which we feel merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad, J.P., M. Carmena, S. Baars, R.D.C. Saunders, D.M. Glover, P. Ludeña, C. Sentis, C. Tyler-Smith & A. Villasante, 1992. Dodeca satellite: a conserved GCC-rich satellite from the centromeric heterochromatin of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 89: 4663–4667.

    Article  PubMed  CAS  Google Scholar 

  • Abad, J.P. & A. Villasante, 1999. The 3' non-coding region of the Drosophila melanogasterHeT-A telomeric retrotransposon contains sequences with propensity to form G-quadruplex DNA. FEBS Lett. 453: 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Agudo, M., J.P. Abad, I. Molina, A. Losada, P. Ripoll & A. Villasante, 1999a. A dicentric chromosome of Drosophila melanogastershowing alternate centromere inactivation. Chromosoma, in press.

  • Agudo, M., A. Losada, J.P. Abad, S. Pimpinelli, P. Ripoll & A. Villasante, 1999b. Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogastercontains a tandem array of telomeric HeT-A-and TART-related sequences. Nucl. Acids Res. 27: 3318–3324.

    Article  PubMed  CAS  Google Scholar 

  • Aragón-Alcaide, L., T. Miller, T. Schwarzacher, S. Reader & G. Moore, 1996. A cereal centromeric sequence. Chromosoma 195: 261–268.

    Article  Google Scholar 

  • Barry, A.E., E.V. Howman, M. R. Cancilla, R. Saffery & K.H.A. Choo, 1999. Sequence analysis of an 80 kb human neocentromere. Hum. Mol. Genet. 8: 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Burgtorf, C. & H. Bünemann, 1993. A telomere-like satellite (GGGTCAT) n comprises 4% of genomic DNA of Drosophila hydeiand is located mainly in centromeric heterochromatin of all large acrocentric autosomes. Gene 137: 287–291.

    Article  CAS  Google Scholar 

  • Carmena, M., J.P. Abad, A. Villasante & C. González, 1993. The Drosophila melanogasterdodeca satellite sequence is closely linked to the centromere and can form connections between sister chromatids during mitosis. J. Cell Sci. 105: 41–50.

    PubMed  CAS  Google Scholar 

  • Catasti, P., G. Gupta, A.E. Garcia, R. Ratliff, L. Hong, P. Yau, R.K. Moyzis & M.E. Bradbury, 1994. Unusual structures of the tandem repetitive DNA sequences located at human centromeres. Biochemistry 33: 3819–3830.

    Article  PubMed  CAS  Google Scholar 

  • Chikashige, Y., D.-Q. Ding, Y. Imai, M. Yamamoto, T. Haraguchi & Y. Hiraoka, 1997. Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe. EMBO J. 16: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Chou, S.-H., L. Zhu & B.R. Reid, 1994. The unusual structure of the human centromere (GGA)2 motif. Unpaired guanosine residues stacked between sheared G.A Pairs. J. Mol. Biol. 244: 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Csink, A.K. & S. Henikoff, 1998. Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 14: 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Danilevskaya, O.N., K. Lowenhaupt & M.L. Pardue, 1998. Conserved subfamilies of the DrosophilaHeT-A telomere-specific retrotransposon. Genetics 148. 233–242.

    PubMed  CAS  Google Scholar 

  • du Sart, D., M.R. Cancilla, E. Earle, J. Mao, R. Saffery, K.M. Tainton, P. Kalitsis, J. Martyn, A.E. Barry & K.H.A. Choo, 1997. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat. Genet. 16: 144–153.

    Article  PubMed  CAS  Google Scholar 

  • Elder, F.F.B. & T.C. Hsu, 1988.Tandem fusions in the evolution of mammalian chromosomes, pp. 481–506 in The Cytogenetics of Mammalian Autosomal Rearrangements, edited by A.A. Sandberg. Alan R. Liss. New York.

    Google Scholar 

  • Espelin, C.W., K.B. Kaplan & P.K. Sorger, 1997. Probing the architecture of a simple kinetochore using DNA-protein crosslinking. J. Cell Biol. 139: 1383–1396.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, N., F. Azorín, A. Villasante, C. Gutiérrez & J.P. Abad, 1995. Centromeric dodeca satellite DNA sequences form fold-back structures. J. Mol. Biol. 245: 8–21.

    PubMed  CAS  Google Scholar 

  • Fisher, A.M., L. Al-Gazali, T. Pramathan, R. Quaife, A.E. Cockwell, J.C. Barber, W.C. Earnshaw, J. Axelman, B.R. Migeon & C. Tyler-Smith, 1997. Centromeric inactivation in a dicentric human Y;21 translocation chromosome. Chromosoma 106: 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Frönicke, L. & H. Scherthan, 1997. Zoo-fluorescence in situhybridization analysis of human and Indian muntjac karyotypes (Muntiacus muntjak vaginalis) reveals satellite DNA clusters at the margins of conserved syntenic segments. Chromosome Res. 5: 254–261.

    Article  PubMed  Google Scholar 

  • Gallego, J., E.B. Golden, D.E. Stanley & B.R. Reid, 1999. The folding of centromeric DNA strands into intercalated structures: a physicochemical and computational study. J. Mol. Biol. 285: 1039–1052.

    Article  PubMed  CAS  Google Scholar 

  • González-García, J.M., C. Antonio, J.A. Suja & J.S. Rufas, 1996. Meiosis in holocentric chromosomes: kinetic activity is randomly restricted to the chromatid ends of sex univalents in Graphosoma italicum(Heteroptera). Chromosome Res. 4: 124–132.

    Article  PubMed  Google Scholar 

  • Grady, D.I., R.L. Ratliff, D.L. Robinson, E.C. McCanlies, J. Meyne & R.K. Moyzis, 1992. Highly conserved repetitive DNA sequences are present at human centromeres. Proc. Natl. Acad. Sci. USA 89: 1695–1699.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, J.J., G. van Bokkelen, R.W. Mays, K. Gustashaw & H.F. Willard, 1997. Formation of de novocentromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15: 345–355.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, E., C. Hardin, K.W. Walk, I.J. Tinoco & E.H. Blackburn, 1987. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell 51: 899–908.

    Article  PubMed  CAS  Google Scholar 

  • Ikeno, M., B. Grimes, T. Okazaki, M. Nakano, K. Saitoh, H. Hoshino, N. McGill, H. Cooke & H. Masumoto, 1998. Construction of YAC-based mammalian artificial chromosomes. Nat. Biotech. 16. 431–439.

    Article  CAS  Google Scholar 

  • Iwahara, J., T. Kigawa, K. Kitagawa, H. Masumoto, T. Okazaki & S. Yokoyama, 1998. A helix-turn-helix structure unit in human centromere protein B (CENP-B). EMBO J. 17: 827–837.

    Article  PubMed  CAS  Google Scholar 

  • Jaishree, T.N. & A.H.-J. Wang, 1994. Human chromosomal centromere (AATGG)n sequence forms stable structures with unusual base pairs. FEBS Lett. 347: 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J., S. Nasuda, F. Dong, C.W. Scherrer, S.-S. Woo, R.A. Wing, B.S. Gill & D.C. Ward, 1996. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc. Natl. Acad. Sci. USA 93: 14210–14213.

    Article  PubMed  CAS  Google Scholar 

  • Karpen, G.H. & R.C. Allshire, 1997. The case for epigenetic effects on centromere identity and function. Trends Genet. 13: 489–496.

    Article  PubMed  CAS  Google Scholar 

  • Kipling, D., A.R. Mitchell, H. Masumoto, H.E. Wilson, L. Nicol & H.J. Cooke, 1995. CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli. Mol. Cell Biol. 15: 4009–4020.

    PubMed  CAS  Google Scholar 

  • König, P., R. Giraldo, L. Chapman & D. Rhodes, 1996. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85: 125–136.

    Article  PubMed  Google Scholar 

  • König, P. & D. Rhodes, 1997. Recognition of telomeric DNA. Trends Biochem. Sci. 22: 43–47.

    Article  PubMed  Google Scholar 

  • Lee, C., X. Li, E.W. Jabs, D. Court & C.C. Lin, 1995. Human gamma X satellite DNA: an X chromosome specific centromeric DNA sequence. Chromosoma 104: 103–112.

    PubMed  CAS  Google Scholar 

  • Lee, C. & C.C. Lin, 1996. Conservation of a 31-bp bovine subrepeat in centromeric satellite DNA monomers of Cervus elaphusand other cervid species. Chromosome Res. 4: 427–435.

    Article  PubMed  CAS  Google Scholar 

  • Lohe, A.R., A.J. Hilliker & P.A. Roberts, 1993. Mapping simple repeated DNA sequences in the heterochromatin of Drosophila melanogaster. Genetics 134: 1149–1174.

    PubMed  CAS  Google Scholar 

  • Madsen, C.S., J.E. Brooks, E. Kloet & S.R. Kloet, 1994. Sequence conservation of an avian centromeric repeated DNA component. Genome 37: 351–355.

    PubMed  CAS  Google Scholar 

  • Murphy, T.D. & G.H. Karpen, 1998. Centromeres take flight: alpha satellite and the quest for the human centromere. Cell 93: 317– 320.

    Google Scholar 

  • Ortiz-Lombardía, M., A. Cortés, D. Huertas, R. Eritja & F. Azorin, 1998. Tandem 5?-GA:GA-3' mismatches account for the high stability of the fold-back structures formed by the centromeric Drosophiladodeca-satellite. J. Mol. Biol. 277: 757–762.

    Article  PubMed  Google Scholar 

  • Ostergren, G. & R. Prakken, 1946. Behaviour on the spindle of the actively mobile chromosome ends of rye. Hereditas 32: 473–494.

    Article  Google Scholar 

  • Pimpinelli, S. & C. Goday, 1989. Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet. 5: 310–315.

    Article  PubMed  CAS  Google Scholar 

  • Rivera, H., A.I. Vassquez, M.L. Ayala-Madrigal, M.L. Ramirez-Duenas & I.P. Davalos, 1996. Alphoidless centromere of a familial unstable inverted Y chromosome. Ann. Genet. 39: 236–239.

    PubMed  CAS  Google Scholar 

  • Romanova, L.Y., G.V. Deriagin, T.D. Mashkova, I.G. Tumeneva, A.R. Mushegian, L.L. Kisselev & I.A. Alexandrov, 1996. Evidence for selection in evolution of alpha satellite DNA: the central role of CENP-B/pJ alpha binding region. J. Mol. Biol. 261: 334–340.

    Article  PubMed  CAS  Google Scholar 

  • Scherthan, H., 1995. Chromosome evolution in muntjac revealed by centromere, telomere and whole chromosome paint probes, pp. 267–281 in Kew Chromosome Conference IV, edited by P.E. Brandham & M.D. Bennet. Kew Royal Botanic Gardens.

  • Smith, K.A., P.A. Gorman, M.B. Stark, R.P. Groves & G.R. Stark, 1990. Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell 63: 1219–1227.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, N.C. & L. Clarke, 1994. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79: 865–874.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, B.A. & H.F. Willard, 1998. Stable dicentric X chromosomes with two functional centromeres. Nat. Genet. 20: 227–228.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X., J. Wahlstrom & G. Karpen, 1997. Molecular structure of a functional Drosophilacentromere. Cell 91: 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  • Tal, M., F. Shimron & G. Yagil, 1994. Unwound regions in yeast centromere IV DNA. J. Mol. Biol. 243: 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Tyler-Smith, C., P. Corish & E. Burns, 1998. Neocentromeres, the Y chromosome and centromere activation. Chromosome Res. 6: 65–67.

    Article  PubMed  CAS  Google Scholar 

  • Wicky, C., A.M. Villeneuve, N. Lauper, L. Codourey, H. Tobler & F. Müller, 1996. Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 93: 8983–8988.

    Article  PubMed  CAS  Google Scholar 

  • Wiens, G.R. & P.K. Sorger, 1998. Centromeric chromatin and epigenetic effects in kinetochore assembly. Cell 93: 313–316.

    Article  PubMed  CAS  Google Scholar 

  • Willard, H.F., 1998. Centromeres: the missing link in the development of human artificial chromosomes. Curr. Opin. Genet. Dev. 8: 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Williams, B.C., T.D. Murphy, M.L. Goldberg & G.H. Karpen, 1998. Neocentromere activity of structurally acentric minichromosomes in Drosophila. Nat. Genet. 18: 30–37.

    Article  PubMed  CAS  Google Scholar 

  • Yoda, K., T. Nakamura, H. Masumoto, N. Suzuki, K. Kitagawa, M. Nakano, A. Shinjo & T. Okazaki, 1996. Centromere protein B of African green monkey cells: gene structure, cellular expression, and centromeric localization. Mol. Cell. Biol. 16: 5169–5177.

    PubMed  CAS  Google Scholar 

  • Zhu, L., S.-H. Chou & B.R. Reid, 1996. A single G-to-C change causes human centromere TGGAA repeats to fold back into hairpins. Proc. Natl. Acad. Sci. USA 93: 12159–12164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abad, J.P., Villasante, A. Searching for a Common Centromeric Structural Motif: Drosophila Centromeric Satellite DNAs Show Propensity to form Telomeric-Like Unusual DNA Structures. Genetica 109, 71–75 (2000). https://doi.org/10.1023/A:1026546510127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026546510127

Navigation