Skip to main content
Log in

Chromatin control of HIV‐1 gene expression

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Upon infection of susceptible cells, the RNA genome of the human immunodeficiency virus type 1 (HIV‐1) is reverse transcribed into double-stranded DNA, which can be subsequently integrated into the cellular genome. After integration, the viral long terminal repeat (LTR) promoter is present in a nucleosome-bound conformation and is transcriptionally silent in the absence of stimulation. Activation of HIV-1 gene expression is concomitant with an acetylation-dependent rearrangement of the nucleosome positioned at the viral transcription start site. Thus, similar to most cellular genes, the transcriptional state of the integrated HIV-1 provirus is closely linked to histone acetylation. This enzymatic activity results from the function of histone-specific nuclear acetyltransferase (HAT) enzymes. Efficient viral transcription is strongly dependent on the virally-encoded Tat protein. The mechanism by which Tat increases the rate of transcriptional initiation has been recently demonstrated and involves the interaction of Tat with the transcriptional coactivator p300 and the closely related CREB-binding protein (CBP), having histone acetyltransferase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allfrey, V.G., 1977. Chromatin and Chromosome Structure. Academic Press, New York.

    Google Scholar 

  • Arya, S.K., C. Guo, S.F. Josephs & F. Wong-Staal, 1985. Transactivator gene of human T-lymphotropic virus type III (HTLV-III). Science 229: 69–73.

    PubMed  Google Scholar 

  • Avantaggiati, M.L., M. Carbone, Y. Nakatani, B. Howard & A.S. Levine, 1996. The SV40 large T antigen and adenovirus E1A oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J. 15: 2236–2248.

    PubMed  Google Scholar 

  • Benkirane, M., R.F. Chun, H. Xiao, V.V. Ogryzko, B.H. Howard, Y. Nakatani & K.T. Jeang, 1998. Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J. Biol. Chem. 273: 24898–24905.

    PubMed  Google Scholar 

  • Berkhout, B., R.H. Silverman & K.T. Jeang. 1989. Tat transactivates the human immunodeficiency virus through a nascent RNA target. Cell 59: 273–282.

    PubMed  Google Scholar 

  • Brownell, J.E. & C.D. Allis, 1996. Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 6: 176–184.

    PubMed  Google Scholar 

  • Calnan, B.J., S. Biancalana, D. Hudson & A.D. Frankel, 1991. Analysis of arginine-rich peptides from the HIV-1 Tat protein reveals unusual features of RNA-protein recognition. Genes Dev. 5: 201–210.

    PubMed  Google Scholar 

  • Cujec, T.P., H. Okamoto, K. Fujinaga, J. Meyer, H. Chamberlin, D.O. Morgan & B.M. Peterlin, 1997. The HIV transactivator TAT binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II. Genes Dev. 11: 2645–2657.

    PubMed  Google Scholar 

  • Cullen, B., 1993. Does HIV-1 Tat induce a change in viral initiation rights? Cell 73: 417–420.

    PubMed  Google Scholar 

  • d'Adda di Fagagna, F., G. Marzio, M.I. Gutierrez, L.K. Kang, A. Falaschi & M. Giacca, 1995. Molecular and functional interactions of transcription factor USF with the Long Terminal Repeat of Human Immunodeficiency Virus type 1. J. Virol. 69: 2765–2775.

    PubMed  Google Scholar 

  • Demarchi, F., P. Bovenzi, D. Di Luca & M. Giacca, 1996a. Transcriptional activation of human immunodeficiency virus type 1 by herpesvirus infection: An in vivo footprinting study. Intervirology 39: 236–241.

    PubMed  Google Scholar 

  • Demarchi, F., F. d'Adda di Fagagna, A. Falaschi & M. Giacca, 1996b. Activation of transcription factor NF-κB by the Tat protein of human immunodeficiency virus-1. J. Virol. 70: 4427–4437.

    PubMed  Google Scholar 

  • Demarchi, F., P. D'Agaro, A. Falaschi & M. Giacca, 1993. In vivo footprinting analysis of constitutive and inducible protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1. J. Virol. 67: 7450–7460.

    PubMed  Google Scholar 

  • Eckner, R., M.E. Ewen, D. Newsome, M. Gerdes, J.A. DeCaprio, J.B. Lawrence & D.M. Livingston, 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8: 869–884.

    PubMed  Google Scholar 

  • El Kharroubi, A., G. Piras, R. Zensen & M.A. Martin, 1998. Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol. Cell. Biol. 18: 2535–2544.

    PubMed  Google Scholar 

  • El Kharroubi, A. & E. Verdin, 1994. Protein-DNA interactions within DNase I-hypersensitive sites located downstream of the HIV-1 promoter. J. Biol. Chem. 269: 19916–19924.

    PubMed  Google Scholar 

  • Finch, J.T., M. Noll & R.D. Kornberg, 1975. Electron microscopy of defined lengths of chromatin. Proc. Natl. Acad. Sci. USA 72: 3320–3322.

    PubMed  Google Scholar 

  • Ghosh, S., M. Selby & B. Peterlin, 1993. Synergy between Tat and VP16 in trans-activation of the HIV-1 LTR. J. Mol. Biol. 234: 610–619.

    PubMed  Google Scholar 

  • Giebler, H.A., J.E. Loring, K. van Orden, M.A. Colgin, J.E. Garrus, K.W. Escudero, A. Brawweiler & J.K. Nyborg, 1997. Anchoring of CREB binding protein to the human T-cell leukemia virus type 1 promoter: a molecular mechanism of Tax transactivation. Mol. Cell. Biol. 17: 5156–5164.

    PubMed  Google Scholar 

  • Giese, K., J. Cox & R. Grosschedl, 1992. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69: 185–195.

    PubMed  Google Scholar 

  • Giles, R.H., D.J.M. Peters & M.H. Breuning, 1998. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14: 178–183.

    PubMed  Google Scholar 

  • Gold, M.O., X. Yang, C.H. Herrmann & A.P. Rice, 1998. PIT-ALRE, the catalytic subunit of TAK, is required for human immunodeficiency virus Tat transactivation in vivo. J. Virol. 72: 4448–4453.

    PubMed  Google Scholar 

  • Gu, W. & R.G. Roeder, 1997. Activation of p53 sequence specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    PubMed  Google Scholar 

  • Holstege, F.C., P.C. van der Vliet & H.T. Timmers, 1996. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 15: 1666–1677.

    PubMed  Google Scholar 

  • Horikoshi, M., C. Bertuccioli, R. Takada, J. Wang, T. Yamamoto & R.G. Roeder, 1992. Transcription factor TFIID induces DNA bending upon binding to the TATA element. Proc. Natl. Acad. Sci. USA 89: 1060–1064.

    PubMed  Google Scholar 

  • Hottiger, M.O. & G.J. Nabel, 1998. Interaction of human immunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein. J. Virol. 72: 8252–8256.

    PubMed  Google Scholar 

  • Ikeda, K., K. Nagano & K. Kawakami, 1993. Possible implications of Sp1-induced bending of DNA on synergistic activation of transcription. Gene 136: 341–343.

    PubMed  Google Scholar 

  • Imhof, A., X.J. Yang, V.V. Ogryzko, Y. Nakatani, A.P. Wolffe & H. Ge, 1997. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7: 689–692.

    PubMed  Google Scholar 

  • Jeang, K.T., R. Chun, N.H. Lin, A. Gatignol, C.G. Glabe & H. Fan, 1993. In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J. Virol. 67: 6224–6233.

    PubMed  Google Scholar 

  • Jones, K.A., 1997. Taking a new TAK on Tat transactivation. Genes Dev. 11: 2593–2599.

    PubMed  Google Scholar 

  • Jones, K.A. & B.M. Peterlin, 1994. Control of RNA initiation and elongation at the HIV-1 promoter. Annu. Rev. Biochem. 63: 717–743.

    PubMed  Google Scholar 

  • Kashanchi, F., G. Piras, M.F. Radonovich, J.F. Duvall, A. Fattaey, C.M. Chiang, R.G. Roeder & J.N. Brady, 1994. Direct interaction of human TFIID with the HIV-1 transactivator Tat. Nature 367: 295–299.

    PubMed  Google Scholar 

  • Koken, S.E., A.E. Greijer, K. Verhoef, J. van Wamel, A.G. Bukrinskaya & B. Berkhout, 1994. Intracellular analysis of in vitro modified HIV Tat protein. J. Biol. Chem. 269: 8366–8375.

    PubMed  Google Scholar 

  • Kuo, M.-H. & C.D. Allis, 1998. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20: 615–626.

    PubMed  Google Scholar 

  • Laughlin, M.A., G.Y. Chang, J.W. Oakes, F. Gonzalez-Scarano & R.J. Pomerantz, 1995. Sodium butyrate stimulation of HIV-1 gene expression: A novel mechanism of induction independent of NF-kappa B. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 9: 332–339.

    PubMed  Google Scholar 

  • Laughlin, M.A., S. Zeichner, D. Kolson, J.C. Alwine, T. Seshamma, R.J. Pomerantz & F. Gonzalez-Scarano, 1993. Sodium butyrate treatment of cells latently infected with HIV-1 results in the expression of unspliced viral RNA. Virology 196: 496–505.

    PubMed  Google Scholar 

  • Luger, K., A.W. Mäder, R.K. Richmond, D.F. Sargent & T.J. Richmond, 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.

    PubMed  Google Scholar 

  • Luger, K. & T.J. Richmond, 1998. DNA binding within the nucleosome core. Curr. Opin. Struct. Biol. 8: 33–40.

    PubMed  Google Scholar 

  • Lundblad, J.R., R.P. Kwok, M.E. Laurance, M.L. Harter & R.H. Goodman, 1995. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374: 85–88.

    PubMed  Google Scholar 

  • Marzio, G., M. Tyagi, M.I. Gutierrez & M. Giacca, 1998. HIV-1 Tat transactivator recruits p300 and CBP histone acetyl transferases to the viral promoter. Proc. Natl. Acad. Sci. USA 23: 13519–13524.

    Google Scholar 

  • Maxon, M.E., J.A. Goodrich & R. Tjian, 1994. Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: A model for promoter clearance. Genes Dev. 8: 515–524.

    PubMed  Google Scholar 

  • Muesing, M.A., D.H. Smith & D.J. Capon, 1987. Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48: 691–701.

    PubMed  Google Scholar 

  • Owen-Hughes, T. & J.L. Workman, 1994. Experimental analysis of chromatin function in transcriptional control. Crit. Rev. Eukary. Gene Expr. 4: 403–441.

    Google Scholar 

  • Parada, C.A. & R.G. Roeder, 1996. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384: 375–378.

    PubMed  Google Scholar 

  • Paranjape, S.M., R.T. Kamakaka & J.T. Kadonaga, 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63: 265–297.

    PubMed  Google Scholar 

  • Pomerantz, R.J., D. Trono, M.B. Feinberg & D. Baltimore, 1990. Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: A molecular model for latency. Cell 61: 1271–1276.

    PubMed  Google Scholar 

  • Rosen, C.A., J.G. Sodroski & W.A. Haseltine, 1985. The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41: 813–823.

    PubMed  Google Scholar 

  • Steger, D.J. & J.L. Workman, 1997. Stable co-occupancy of transcription factors and histones at the HIV-1 enhancer. EMBO J. 16: 2463–2472.

    PubMed  Google Scholar 

  • Thomas, J.O. & R.D. Kornberg, 1975. An octamer of histones in chromatin and free in solution. Proc. Natl. Acad. Sci. USA 72: 2626–2630.

    PubMed  Google Scholar 

  • Turner, B.M., 1993. Decoding the nucleosome. Cell 75: 5–8.

    PubMed  Google Scholar 

  • van Holde, K. & J. Zlatanova, 1996. What determines the folding of the chromatin fiber? Proc. Natl. Acad. Sci. USA 93: 10548–10555.

    PubMed  Google Scholar 

  • Van Lint, C., S. Emiliani, M. Ott & E. Verdin, 1996. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J. 15: 1112–1120.

    PubMed  Google Scholar 

  • Verdin, E., 1991. DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J. Virol. 65: 6790–6799.

    PubMed  Google Scholar 

  • Verdin, E., P. Paras, Jr. & C. Van Lint, 1993. Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J. 12: 3249–3259.

    PubMed  Google Scholar 

  • Wei, P., M.E. Garber, S.-M. Fang, W.H. Fisher & K.A. Jones, 1998. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92: 451–462.

    PubMed  Google Scholar 

  • Wolffe, A.P., 1994. Transcription: In tune with the histones. Cell 77: 13–16.

    PubMed  Google Scholar 

  • Wolffe, A.P. & D. Pruss, 1996. Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell 84: 817–819.

    PubMed  Google Scholar 

  • Workman, J.L., I.C.A. Taylor, R.E. Kingston & R.G. Roeder, 1989. Control of class II gene transcription during in vitro nucleosome assembly, pp. 419–447 in Methods in Enzymology, edited by P.M. Wasserman and R.D. Kornberg. Academic Press, San Diego.

    Google Scholar 

  • Zhu, Y., T. Pe'ery, J. Peng, Y. Ramanathan, N. Marshall, T. Marshall, B. Amendt, M.B. Mathews & D.H. Price, 1997. Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro. Genes Dev. 11: 2622–2632.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzio, G., Giacca, M. Chromatin control of HIV‐1 gene expression. Genetica 106, 125–130 (1999). https://doi.org/10.1023/A:1003797332379

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003797332379

Navigation