Skip to main content
Log in

Overcompensation by plants: Herbivore optimization or red herring?

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

The increased growth rates, higher total biomass, and increased seed production occasionally found in grazed or clipped plants are more accurately interpreted as the results of growth at one end of a spectrum of normal plant regrowth patterns, rather than as overcompensation, herbivore-stimulated growth, plantherbivore mutualisms, or herbivore enhanced fitness. Plants experience injury from a wide variety of sources besides herbivory, including fire, wind, freezing, heat, and trampling; rapid regrowth may have been selected for by any one of the many types of physical disturbance or extreme conditions that damage plant tissues, or by a combination of all of them. Rapid plant regrowth is more likely to have evolved as a strategy to reduce the negative impacts of all types of damage than as a strategy to increase fitness following herbivory above ungrazed levels. There is no evolutionary justification and little evidence to support the idea that plant-herbivore mutualisms are likely to evolve. Neither life history theory nor recent theoretical models provide plausible explanations for the benefits of herbivory.

Several assumptions underlie all discussions of the benefits of herbivory: that plant species are able to evolve a strategy of depending on herbivores to increase their productivity and fitness; that herbivores do not preferentially regraze the overcompensating plants; that resources will be sufficient for regrowth; and that being larger is always ‘better’ than being smaller. None of these assumptions is necessarily correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarssen, L. W. and Irwin, D. L. (1991) What selection: herbivory or competition.Oikos 60, 261–2.

    Google Scholar 

  • Archer, S. R. and Tieszen, L. L. (1986) Plant response to defoliation: hierarchical considerations.Grazing Research at Northern Latitudes (O. Gudmundsson, ed.), pp. 45–59. Plenum, New York, USA.

    Google Scholar 

  • Belsky, A. J. (1986a) Does herbivory benefit plants? A review of the evidence.Am. Nat. 127, 870–92.

    Google Scholar 

  • Belsky, A. J. (1986b) Population and community processes in a mosaic grassland in the Serengeti, Tanzania.J. Ecol. 74, 841–56.

    Google Scholar 

  • Belsky, A. J. (1987) The effects of grazing: confounding of ecosystem, community, and organism scales.Am. Nat. 129, 777–83.

    Google Scholar 

  • Bergelson, J. and Crawley, M. J. (1992a) Herbivory andIpomopsis aggregata: the disadvantages of being eaten.Am. Nat. 139, 870–82.

    Google Scholar 

  • Bergelson, J. and Crawley, M. J. (1992b) The effects of grazers on the performance of individuals and populations of scarlet gilia,Ipomopsis aggregata.Oecologia (Berlin)90, 435–44.

    Google Scholar 

  • Booysen, P. de V. and Tainton, N. M. (1984)Ecological Effects of Fire in South African Ecosystems. Springer-Verlag, New York, USA.

    Google Scholar 

  • Briske, D. D. (1986) Plant response to defoliation: morphological considerations and allocation priorities.Rangelands: a Resource under Siege (P. J. Joss, P. W. Lynch, and O. B. Williams, eds), pp. 425–7. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Briske, D. D. (1991) Developmental morphology and physiology of grasses.Grazing Management: An Ecological Perspective (R. K. Heitschmidt and J. W. Stuth, eds), pp. 11–26. Timber Press, Portland, OR, USA.

    Google Scholar 

  • Bruederle, L. P. and Stearns, F. (1985) Ice storm damage to a southern Wisconsin mesic forest.Bull. Torrey Bot. Club 112, 167–75.

    Google Scholar 

  • Caldwell, M. M., Richards, J. H., Johnson, D. A., Nowak, R. S. and Dzurec, R. S. (1981) Coping with herbivory: photosynthetic capacity and resource allocation in two semiaridAgropyron bunchgrasses.Oecologia 50, 14–24.

    Google Scholar 

  • Chapin, F. S. (1991) Integrated responses of plants to stress.Biosci. 41, 29–36.

    Google Scholar 

  • Chapin, F. S. III and McNaughton, S. J. (1989) Lack of compensatory growth under phosphorus deficiency in grazing-adapted grasses from the Serengeti Plains.Oecologia 79, 551–7.

    Google Scholar 

  • Chapin, F. S. III, Schulze, E.-D. and Mooney, H. A. (1990) The ecology and economics of storage in plants.Ann. Rev. Ecol. Sys. 21, 423–7.

    Google Scholar 

  • Chapin, F. S. III, Bloom, A. J., Field, C. B. and Waring, R. H. (1987) Plant responses to multiple environmental factors.Biosci. 37, 49–57.

    Google Scholar 

  • Charlesworth, B. (1980)Evolution in Age-structured Populations. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Charlesworth, B. and León, J. A. (1976) The relationship of reproductive effort to age.Am. Nat. 100, 449–59.

    Google Scholar 

  • Chazdon, R. L. (1986) The costs of leaf support in understory palms: economy versus safety.Am. Nat. 127, 9–30.

    Google Scholar 

  • Clark, D. B. and Clark, D. H. (1991) The impact of physical damage on canopy tree regeneration in tropical rain forests.J. Ecol. 79, 447–57.

    Google Scholar 

  • Coffin, D. P. and Lauenroth, W. K. (1988). The effects of disturbance size and frequency on a shortgrass plant community.Ecology 69, 1609–17.

    Google Scholar 

  • Cole, L. C. (1954) The population consequences of life history phenomena.Q. Rev. Biol. 29, 103–37.

    Google Scholar 

  • Collins, S. L. and Uno, G. E. (1983) Effect of early spring burning on vegetation in buffalow wallow.Bull. Torrey Bot. Club 110, 474–81.

    Google Scholar 

  • Collins, S. L. and Wallace, L. L. (eds). (1990)Fire in North American Tallgrass Prairies. University of Oklahoma Press, Norman, OK, USA.

    Google Scholar 

  • Cox, C. S. and McEvoy, B. P. (1983) Effects of summer moisture stress on the capacity of tansy ragwort (Senecio jacobeae) to compensate for defoliation by cinnabar moth (Tyria jacobaeae).J. Appl. Ecol. 20, 225–34.

    Google Scholar 

  • Crawley, M. J. (1983)Herbivory: The Dynamics of Animal-plant Interactions. University of California Press, Berkeley.

    Google Scholar 

  • Crawley, M. J. (1987) Benevolent herbivores?Trends Ecol. Evol. 2, 167–8.

    Google Scholar 

  • Downs, A. A. (1938) Glaze damage in the birch-beech-hemlock forest of Pennsylvania and New York.J. Forestry 36, 63–70.

    Google Scholar 

  • Dyer, M. I. (1975) The effects of red-winged blackbirds (Agelaius phoeniceus L.) on biomass production of corn grains. (Zea mays L.).J. Appl. Ecol. 12, 719–26.

    Google Scholar 

  • Dyer, M. I., Turner, C. L. and Seastedt, T. R. (1991) Influence of mowing and fertilization inBromus inermis.Ecol. Appl. 1, 443–52.

    Google Scholar 

  • Dyer, M. I., Detling, J. K., Coleman, D. C. and Hilbert, D. W. (1982) The role of herbivores in grasslands.Grasses and Grasslands: Systematics and Ecology (J. R. Estes, R. J. Tyrl and J. N. Brunken, eds), pp. 244–95. University of Oklahoma Press, Norman, OK, USA.

    Google Scholar 

  • Eaton, F. M. (1931) Early defloration as a method of increasing cotton yields; the relation of fruitfulness to fiber and boll characters.J. Agric. Res. 42, 447–62.

    Google Scholar 

  • Ellison, L. (1960) Influence of grazing on plant succession of rangelands.Bot. Rev. 26, 1–78.

    Google Scholar 

  • Endler, J. A. (1986)Natural Selection in the Wild. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Feeny, P. (1976) Plant apparency and chemical defense.Recent Adv. Phytochem. 10, 1–40.

    Google Scholar 

  • Fisher, R. A. (1958)The Genetical Theory of Natural Selection. Dover, New York, USA.

    Google Scholar 

  • Gadgil, M. and Bossert, W. (1970) Life historical consequences of natural selection.Am. Nat. 104, 1–24.

    Google Scholar 

  • Gartner, B. L. (1989) Breakage and regrowth ofPiper species in rain forest understory.Biotrop. 21, 303–7.

    Google Scholar 

  • Georgiades, N. J., Ruess, R. W., McNaughton, J. S. and Western, D. (1989) Ecological conditions that determine when grazing stimulates grass production.Oecologia 81, 316–22.

    Google Scholar 

  • Grime, F. P. (1979)Plant Strategies and Vegetation Processes. Wiley, New York, USA.

    Google Scholar 

  • Gulman, S. L. and Mooney, H. A. (1986) Costs of defense and their effects on plant productivity.On the Economy of Plant Form and Function (T. J. Givnish, ed.), pp. 681–98. Cambridge University Press, New York, USA.

    Google Scholar 

  • Harcombe, P. A. and Marks, P. L. (1983) Five years of tree death in aFagus-Magnolia forest, southeast Texas (USA).Oecologia 57, 49–54.

    Google Scholar 

  • Harper, J. L. (1977)Population Biology of Plants. Academic Press, New York, USA.

    Google Scholar 

  • Hendrix, S. D. and Trapp, E. J. (1989) Floral herbivory inPastinaca sativa: do compensatory responses offset reductions in fitness?Evolution 43, 891–5.

    Google Scholar 

  • Hik, D. S. and Jeffries, R. L. (1990) Increases in the net aboveground primary productivity of a salt-marsh forage grass: a test of the predictions of the herbivore-optimization model.J. Ecol. 78, 180–95.

    Google Scholar 

  • Hilbert, D. W., Swift, D. M., Detling, J. K. and Dyer, M. I. (1981) Relative growth rates and the grazing optimization hypothesis.Oecologia 51, 14–18.

    Google Scholar 

  • Knapp, A. K. and Seastedt, T. R. (1986) Detritus accumulation limits productivity of tallgrass prairies.Bioscience 36, 662–8.

    Google Scholar 

  • Kramer, P. J. and Koslowski, T. T. (1979)Physiology of Woody Plants. Academic Press, New York, USA.

    Google Scholar 

  • Leach, G. J. (1971) The yield and survival of lucerne lines in the upper south-east of southern Australia.Aust. J. Exp. Agric. Anim. Husbandry 11, 186–93.

    Google Scholar 

  • León, J. A. (1976) Life histories as adaptive strategies.J. Theor. Biol. 60, 301–36.

    Google Scholar 

  • McNaughton, S. J. (1979a) Grazing as an optimization process: grass-ungulate relationships in the Serengeti.Am. Nat. 113, 691–703.

    Google Scholar 

  • McNaughton, S. J. (1979b) Grassland-herbivore dynamics.Serengeti: Dynamics of an Ecosystem (A. R. E. Sinclair and M. Norton-Griffiths, eds.), pp. 82–103. University of Chicago Press, Chicago, USA.

    Google Scholar 

  • McNaughton, S. J. (1983) Compensatory plant growth as a response to herbivory.Oikos 40, 329–36.

    Google Scholar 

  • McNaughton, S. J. (1986) On plants and herbivores.Am. Nat. 128, 765–70.

    Google Scholar 

  • Maschinski, J. and Whitham, T. G. (1989) The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing.Am. Nat. 134, 1–19.

    Google Scholar 

  • Meijden, E. van der, Wijn, M. and Verkaar, H. J. (1988) Defense and regrowth, alternative plant strategies in the struggle against herbivores.Oikos 51, 355–63.

    Google Scholar 

  • Michod, R. H. (1979) Evolution of life histories in response to age-specific mortality factors.Am. Nat. 113, 531–50.

    Google Scholar 

  • Oesterheld, M. and McNaughton, S. J. (1988) Intraspecific variation in the response ofThemeda triandra to defoliation: the effect of the time of recovery and growth rates on compensatory growth.Oecologia 77, 550–6.

    Google Scholar 

  • Olson, B. E., Senft, R. L. and Richards, J. H. (1989) A test of grazing compensation and optimization of crested wheatgrass using a simulation model.J. Range Manag. 42, 458–67.

    Google Scholar 

  • Owen, D. F. (1980) How plants may benefit from the animals that eat them.Oikos 35, 230–5.

    Google Scholar 

  • Owen, D. F. and Wiegert, R. G. (1976) Do consumers maximize plant fitness?Oikos 27, 488–92.

    Google Scholar 

  • Owen, D. F. and Wiegert, R. G. (1981) Mutualism between grasses and grazers: an evolutionary hypothesis.Oikos 36, 376–8.

    Google Scholar 

  • Paige, K. N. and Whitham, T. G. (1987) Overcompensation in response to mammalian herbivory: the advantage of being eaten.Am. Nat. 129, 407–16.

    Google Scholar 

  • Painter, E. L. and Belsky, A. J. (1993) Application of herbivore optimization theory to rangelands of the western United States.Ecol. Appl. 3 (in press).

  • Painter, E. L. and Detling, J. K. (1981) Effects of defoliation on net photosynthesis and regrowth of western wheatgrass.J. Range Manag. 34, 68–71.

    Google Scholar 

  • Petelle, M. (1982) More mutualisms between consumers and plants.Oikos 38, 125–7.

    Google Scholar 

  • Pickett, S. T. A. and White, P. S. (1985)The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York, USA.

    Google Scholar 

  • Prins, A. H. and Nell, H. W. (1990) Positive and negative effects of herbivory on the population dynamics ofSenecio jacobaea L. andCynoglossum officinale L.Oecologia 83, 325–32.

    Google Scholar 

  • Prins, A. H., Verkaar, H. J. and van den Herik, M. (1989) Responses ofCynoglossum officinale L. andSenecio jacobaea L. to various degrees of defoliation.New Phytol. 111, 725–31.

    Google Scholar 

  • Putz, F. E. and Brokow, N. V. L. (1989) Sprouting of broken trees on Barro Colorado Island, Panama.Ecology 70, 508–12.

    Google Scholar 

  • Reichman, O. J. and Smith, S. C. (1991) Responses of simulated leaf and root herbivory by a biennialTragopogon dubius.Ecology 72, 116–24.

    Google Scholar 

  • Richards, J. H. and Caldwell, M. M. (1985) Soluble carbohydrates, concurrent photosynthesis and efficiency in regrowth following defoliation: a field study withAgropyron species.J. Appl. Ecol. 22, 907–20.

    Google Scholar 

  • Richards, J. H., Mueller, R. J. and Mott, J. J. (1988) Tillering in tussock grasses in relation to defoliation and apical bud removal.Ann. Bot. 62, 173–9.

    Google Scholar 

  • Schaffer, W. M. (1977) Some observations on the evolution of reproductive rate and competitive ability in flowering plants.Theor. Pop. Biol. 11, 90–104.

    Google Scholar 

  • Schaffer, W. M. (1979) Equivalence of maximizing reproductive value and fitness in the case of reproductive strategies.Proc. Natl Acad. Sci. USA 76, 3567–9.

    Google Scholar 

  • Schaffer, W. M. and Rosenzweig, M. L. (1977) Selection for optimal life histories. II. Multiple equilibria and the evolution of alternative reproductive strategies.Ecology 58, 60–72.

    Google Scholar 

  • Stenseth, N. C. (1978) Do grazers maximize individual plant fitness?Oikos 31, 299–306.

    Google Scholar 

  • Strauss, S. Y. (1988) Determining the effects of herbivory using naturally damaged plants.Ecology 69, 1628–30.

    Google Scholar 

  • Taylor, H. M., Gourley, R. S., Lawrence, C. E. and Kaplan, R. S. (1974) Natural selection of life history attributes: an analytical approach.Theor. Pop. Biol. 5, 104–22.

    Google Scholar 

  • Taylor, W. E. (1971) Effects of artificial defoliation (simulating pest damage) on varieties of upland rice.Exp. Agric. 8, 79–83.

    Google Scholar 

  • Tuljapurkar, S. (1990)Population Dynamics in Variable Environments. Springer-Verlag, New York, USA.

    Google Scholar 

  • Turner, C. L., Seastedt, T. R. and Dyer, M. I. (1993) Maximization of aboveground production in grasslands: the role of defoliation frequency, intensity, and history.Ecol. Appl. 3, (in press).

  • Vail, S. G. (1992) Selection for overcompensatory plant responses to herbivory: a mechanism for the evolution of plant-herbivore mutualism.Am. Nat. 139, 1–8.

    Google Scholar 

  • Verkaar, H. J. (1986) When does grazing benefit plants?Trends Ecol. Evol. 1, 168–9.

    Google Scholar 

  • Verkaar, H. J. (1988) Are defoliators beneficial for their host plants in terrestrial ecosystems — a review?Acta Bot. Neerl. 37, 137–52.

    Google Scholar 

  • Verkaar, H. J., van der Meijden, E. and Breebaart, L. (1986) The responses ofCynoglossum officinale L. andVerbascum thapsus L. to defoliation in relation to nitrogen supply.New Phytol. 104, 121–9.

    Google Scholar 

  • Vogl, R. J. (1974) Effects of fire on grasslands.Fire and Ecosystems (T. T. Kozlowski and C. E. Ahlgren, eds.), pp. 139–94. Academic Press, New York.

    Google Scholar 

  • Walker, L. R., Lodge, D. J. Brokaw, N. V. and Waide, R. B., eds (1991) An introduction to hurricanes in the Caribbean.Biotropica 23, 313–16.

  • Wallace, L. L., McNaughton, S. J. and Coughenour, M. B. (1984) Compensatory photosynthetic responses of three African graminoids to different fertilization, watering, and clipping regimes.Bot. Gaz. 145, 151–6.

    Google Scholar 

  • Webb, S. L. (1989) Contrasting windstorm consequences in two forests, Itasca State Park, Minnesota,Ecology 70, 1167–80.

    Google Scholar 

  • White, P. S. (1979) Pattern, process, and natural disturbance in vegetation.Bot. Rev. 45, 229–99.

    Google Scholar 

  • Williamson, S. C., Detling, J. K., Dodd, J. L. and Dyer, M. I. (1989) Experimental evaluation of the grazing optimization hypothesis.J. Range Manag. 42, 149–52.

    Google Scholar 

  • Wright, H. A. and Bailey, A. W. (1982)Fire Ecology: United States and Southern Canada. Wiley, New York, USA.

    Google Scholar 

  • Youngner, V. B. (1972) Physiology of defoliation and regrowth.The Biology and Utilization of Grasses (V. B. Youngner and C. M. McKell, eds), pp. 292–303. Academic Press, New York, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belsky, A.J., Carson, W.P., Jensen, C.L. et al. Overcompensation by plants: Herbivore optimization or red herring?. Evol Ecol 7, 109–121 (1993). https://doi.org/10.1007/BF01237737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237737

Keywords

Navigation