Skip to main content
Log in

Helical distributions of stokeslets

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Helical distributions of stokeslets can valuably model microbial locomotion through a fluid, and also the flow field generated, wherever a flagellum actively executes helical undulations (as in many single-celled algae and protozoa) or where (as in many bacteria) the action of rotary motors causes a passive structure of helical shape (which may be a flagellum or else the cell body itself) to rotate. Here, previous biomechanical studies of such modes of locomotion are extended to include analyses of three-dimensional flow fields. In some cases, a rotlet field (curl of a stokeslet) needs to be incorporated in the models. For example, spirochete swimming is modelled by combined helical distributions of stokeslets and rotlets; the computed flow field being confined to within distances of less than twice the radius of the cell body's helical shape from its axis, while including a powerful jet-like interior flow through the coils of the swimming spirochete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Lighthill, Flagellar Hydrodynamics. SIAM Review 18 (1976) 161–230.

    Google Scholar 

  2. G.I. Taylor, Analysis of the swimming of microscopic organisms. Proc. Roy. Soc. A 209 (1951) 447–461.

    Google Scholar 

  3. G.I. Taylor, The action of waving cylindrical tails in propelling microscopic organisms. Proc. Roy. Soc. A 211 (1952) 225–239.

    Google Scholar 

  4. G.I. Taylor, Analysis of the swimming of long and narrow animals. Proc. Roy. Soc. A 214 (1952) 158–183.

    Google Scholar 

  5. J. Lighthill, Reinterpreting the basic theorem of flagellar hydrodynamics. J. Eng. Maths. 30 (1996) 25–34.

    Google Scholar 

  6. F.D. Warner and P. Satir, The substructure of ciliary microtubules. J. Cell Sci. 12 (1973) 313–326.

    Google Scholar 

  7. V.I. Chapman and D.J. Chapman, The Algae, 2nd Ed. New York: MacMillan (1973) 497 pp.

    Google Scholar 

  8. M. Parke and D.G. Rayns, Studies on Marine Flagellates VII. Nephroselmis gilva and some allied forms. J. Marine Biol. Assoc. UK 44 (1964) 209–217.

    Google Scholar 

  9. M.E.J. Holwill, Physical Aspects of Flagellar Movement. Physiol. Rev. 46 (1966) 696–785.

    Google Scholar 

  10. A.L. Lowndes, On flagellar movement in unicellular organisms. Proc. Zool. Soc. London 111 (1941) 111–134.

    Google Scholar 

  11. R.A. Lewin, Studies on the flagella of algae. I. General observations on Chlamydomonas moewusii Gerloff. Biol. Bull. 103 (1952) 74–79.

    Google Scholar 

  12. T.L. Jahn, W.M. Harrison and M. Landman, Mechanics of Locomotion in Flagellates. I. Ceratium. J. Protozool. 10 (1963) 358–363.

    Google Scholar 

  13. M.E.J. Holwill, The motion of Euglena viridis: the role of flagella. J. Exp. Biol. 44 (1966) 579–588.

    Google Scholar 

  14. E. Jawetz, J.L. Melnick and E.A. Adelberg, Medical Microbiology, 19th Ed. Englewood Cliffs, New Jersey: Prentice Hall (1991) 632 pp.

    Google Scholar 

  15. H.C. Berg, Dynamic properties of bacterial flagellar motors. Nature 249 (1974) 77–79.

    Google Scholar 

  16. B.L. Taylor and D.E. Koshland, Reversal of flagellar rotation in monotrichous and peritrichous bacteria: generation of changes in direction. J. Bacteriol. 119 (1974) 640–642.

    Google Scholar 

  17. A.J. Salle, Fundamental Principles of Bacteriology. New York: McGraw-Hill (1961) 812 pp.

    Google Scholar 

  18. R. Macnab and D. E. Koshland, Bacterial motility and chemotaxis: light-induced tumbling response and visualisation of individual flagella. J. Molec. Biol. 84 (1974) 399–406.

    Google Scholar 

  19. H.C. Berg and D.A. Brown, Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239 (1972) 500–504.

    Google Scholar 

  20. V.V. Kingsley and J.F.M. Hoeniger, Growth, Structure and Classification of Selenomonas. Bacteriol. Rev. 37 (1973) 479–521.

    Google Scholar 

  21. A.T. Chwang, T.Y. Wu and H. Winet, Locomotion of spirilla. Biophys. J. 12 (1972) 1549–1561.

    Google Scholar 

  22. M. Ramia, Numerical model for the locomotion of spirilla. Biophys. J. 60 (1991) 1057–1058.

    Google Scholar 

  23. P. Metzner, Die Bewegung und Reizbeantwortung der bipolar begeisselten Spirillen. Biol. Zentr. 40 (1920) 49–87.

    Google Scholar 

  24. J.B. Baseman, The Spirochetes. In: B.D. Davis, R. Dulbecco, H.N. Eisen and H.S. Ginsberg (eds.) Microbiology, 4th Ed. Philadelphia: J.B. Lippincott (1990) pp. 673–685.

    Google Scholar 

  25. A.T. Chwang, H. Winet and T.Y. Wu, A theoretical mechanism of spirochetal locomotion. J. Mechanochem. Cell Motility 3 (1974) 69–76.

    Google Scholar 

  26. H.C. Berg, Bacterial movement. In: T.Y. Wu, C.J. Brokaw and C. Brennen (eds.) Swimming and Flying in Nature. New York: Plenum Press (1975) pp. 1–11.

    Google Scholar 

  27. R.L. Ricca, The effect of torsion on the motion of a helical vortex filament. J. Fluid Mech. 273 (1994) 241–259.

    Google Scholar 

  28. H.A. Lorentz. Eene algemeene stelling omtrent de beweging eener vloeistof met wrijving en eenige daaruit afgeleide gevolgen (A general theorem concerning the motion of a viscous fluid and a few consequences derived from it). Versl. K. Acad. Wetensch. Amsterdam 5 (1896) 168–175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lighthill, J. Helical distributions of stokeslets. J Eng Math 30, 35–78 (1996). https://doi.org/10.1007/BF00118823

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118823

Keywords

Navigation