Skip to main content
Log in

A continuum approach to the second-sound effect

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Standard techniques of continuum mechanics are used to describe the flow of certain microscopic excitations which are believed to give rise to the second-sound phenomena in some materials at low temperatures. Appropriate balance laws are formulated, and constitutive equations for an elastic solid are postulated. The propagation of small-amplitude second-sound waves is discussed and the results compared with those predicted by the theory of Lord and Shulman [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord, N. W. and Shulman, Y., A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15 (1967) 299

    Google Scholar 

  2. Peshkov, V., “Second sound” in helium II. J. Phys. (USSR) 8 (1944) 381

    Google Scholar 

  3. Peshkov, V., Report on an International Conference on Fundamental Particles and Low Temperature Physics. Vol. II p. 19. The Physical Society of London 1947

  4. Ackerman, C. C., Bertman, B, Fairbank, H. A. and Guyer, R. A., Second sound in solid helium. Phys. Rev. Letters (16) (1966) 789

    Google Scholar 

  5. Ackerman, C. C. and Overton, W. C.Jr., Second-sound in solid Helium-3. Phys. Rev. Letters 22 (1969) 764

    Google Scholar 

  6. Rogers, S. J., Transport of heat and approach to second-sound in some isotropically pure alkali-halide crystals. Phys. Rev. B 3 (1971) 1440

    Google Scholar 

  7. Tisza, L. Transport phenomena in Helium II. Nature 141 (1938) 913

    Google Scholar 

  8. Landau, L. D., The theory of superfluidity of helium II. J. Phys. USSR 5 (1941) 71

    Google Scholar 

  9. Maxwell, J. C., On the dynamic theory of gases. Phil. Trans. Roy. Soc. Lond. 157 (1867) 49

    Google Scholar 

  10. Chester, M. Second sound in solids. Phys. Rev. 131 (1963) 2013

    Google Scholar 

  11. Popov, E. B., Dynamic coupled problem of thermoelasticity for a half space taking into account finite heat propagation velocity. J. Appl. Math. Mech. (PMM) 31 (1967) 349

    Google Scholar 

  12. Nayfeh, A. and Nemat-Nasser, S., Thermoelastic waves in solids with thermal relaxation. Acta Mech. 12 (1971) 53

    Google Scholar 

  13. Norwood, F. R. and Warren, W. E., Wave propagation in the generalized dynamical theory of thermoelasticity. Q. Jl. Mech. Appl. Math. 22 (1969) 283

    Google Scholar 

  14. Beevers, C. E., Stability of waves and shock structure in generalized thermoelasticity at low temperatures. Acta Mech. 17 (1973) 55

    Google Scholar 

  15. Gurtin, M. E. and Pipkin, A. C., A general theory of heat conduction with finite wave speeds. Arch. ration. Mech. Analysis. 31 (1968) 113

    Google Scholar 

  16. Chen, P. J. and Gurtin, M. E., On second sound in materials with memory. Zeit. angew. Math. Phys. 21 (1970) 232

    Google Scholar 

  17. Bogy, D. B. and Naghdi, P. M., On heat conduction and wave propagation in rigid solids. J. Math. Phys. 11 (1970) 917

    Google Scholar 

  18. Guyer, R. S. and Krumhansl, J. A., Thermal conductivity, second sound, and phonon hydrodynamic phenomena in non-metallic crystals. Phys. Rev. 148 (1966) 778

    Google Scholar 

  19. Atkin, R. J. and Fox, N., A multipolar approach to liquid helium II, Acta Mech. 21 (1975) 221

    Google Scholar 

  20. Atkin, R. J. and Fox, N., On the two-fluid continuum theory for rotating helium II. Lett. Nuovo. Cimento 8 (1973) 665

    Google Scholar 

  21. Atkin, R. J. and Fox, N., On the frame-dependence of stress and heat flux in polar fluids. Zeit. angew. Math. Phys. 24 (1973) 853

    Google Scholar 

  22. Truesdell, C. and Noll, W., The non-linear field theories of mechanics. Handbuch der Physik. Vol. III/3. Springer-Verlag, Berlin 1965.

    Google Scholar 

  23. Wilks, J., The properties of liquid and solid helium. Oxford University Press 1967

  24. Coleman, B. D. and Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity. Arch. ration. Mech. Analysis. 13 (1963) 167

    Google Scholar 

  25. Chadwick, P. and Seet, L. T. C., “Second-order thermoelasticity theory for isotropic and transversely isotropic materials”, in Trends in Elasticity and Thermoelasticity, Nowacki Anniversary Volume, p. 29. Wolters-Noordhoff Publishing, Groningen 1971

    Google Scholar 

  26. Chadwick, P., Thermoelasticity. The Dynamical Theory. Progress in Solid Mechanics. Vol. I, pp 265–328. North-Holland, Amsterdam 1960

    Google Scholar 

  27. Green, A. E. and Laws, N., On the Entropy Production Inequality. Arch. Rational Mech. Anal. 45 (1972) 47

    Google Scholar 

  28. Green, A. E. and Lindsay, K. A., Thermoelasticity. J. Elasticity 2 (1972) 1

    Google Scholar 

  29. Green, A. E., A Note on Linear Thermoelasticity. Mathematika 19 (1972) 69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkin, R.J., Fox, N. & Vasey, M.W. A continuum approach to the second-sound effect. J Elasticity 5, 237–248 (1975). https://doi.org/10.1007/BF00126988

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126988

Keywords

Navigation