Skip to main content
Log in

Dynamical friction on a satellite of a disk galaxy: The circular orbit

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In a previous paper, we have studied dynamical friction during a parabolic passage of a companion galaxy past a disk galaxy. This paper continues with the study of satellites in circular orbits around the disk galaxy. Simulations of orbit decay in a self gravitating disk are compared with estimates based on two-body scattering theories; the theories are found to give a satisfactory explanation of the orbital changes. The disk friction is strongly dependent on the sense of rotation of the companion relative to the rotation of the disk galaxy as well as on the amount of mass in a spherical halo. The greatest amount of dynamical friction occurs in direct motion if no spherical halo is present. Then the infall time from the edge of the disk is about one half of the orbital period of the disk edge. A halo twice as massive as the disk increases the infall time four fold. The results of Quinn and Goodman, obtained with a non-self-gravitating method, agree well with our experiments with massive halos (Q 0 ≈ 1.5), but are not usable in a more general case. We give analytic expressions for calculating the disk friction in galaxies of different disk/halo mass ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Athanassoula, E. 1984, Physics Reports, 114, 319.

    Google Scholar 

  • Abramowitz, M. and Stegun, I. A.: 1972, Handbook of Mathematical Functions.

  • Bontekoe, Tj. R. and van Albada, T. S.: 1987, Monthly Notices R. Astr. Soc., 224, 349.

    Google Scholar 

  • Borne, K. D.: 1984, Astrophys. J., 287, 503.

    Google Scholar 

  • Byrd, G. G., Saarinen, S. and Valtonen, M. J.: 1986a, Monthly Notices R. Astr. Soc., 220, 619.

    Google Scholar 

  • Byrd, G. G., Smith, B. and Miller, R. H.: 1984, Astrophys. J., 286, 62.

    Google Scholar 

  • Byrd, G. G., Sundelius, B. and Valtonen, M. J.: 1987, Astr. Astrophys., 171, 16.

    Google Scholar 

  • Byrd, G. G. and Valtonen, M. J.: 1987, Astron. J., 93, 811.

    Google Scholar 

  • Byrd, G. G., Valtonen, M. J., Sundelius, B. and Valtaoja, L.: 1986b, Astr. Astrophys., 166, 75.

    Google Scholar 

  • Chandrasekhar, S.: 1942, Principles of Stellar Dynamics, Dover, New York.

    Google Scholar 

  • Chandrasekhar, S.: 1943, Astrophys. J., 97, 251.

    Google Scholar 

  • Heckman, T. M., Carty, T. J. and Bothun, G. D.: 1985, Astrophys. J., 288, 122.

    Google Scholar 

  • Henon, M. and Petit, J. M.: 1986, Celest. Mech., 38, 67.

    Google Scholar 

  • Holmberg, E.: 1969, Arkiv Astron., 5, 305.

  • Huang, T. Y. and Valtonen, M. J.: 1987, Monthly Notices R. Astr. Soc., 229, 333.

    Google Scholar 

  • Kennicutt, R. C. and Keel, W. C.: 1984, Astrophys. J., 279, L5.

    Google Scholar 

  • Lin, D. N. C. and Tremaine, S. D.: 1983, Astrophys. J., 264, 364.

    Google Scholar 

  • Lynden-Bell, D. and Pineault, S.: 1978, Monthly Notices R. Astr. Soc., 185, 679.

    Google Scholar 

  • Mestel, L.: 1963, Monthly Notices R. Astr. Soc., 126, 553.

    Google Scholar 

  • Miller, R. H.: 1971, Astrophys. Space Sci., 14, 73.

    Google Scholar 

  • Miller, R. H.: 1974, Astrophys. J., 190, 539.

    Google Scholar 

  • Miller, R. H.: 1976, J. Comput. Phys., 21, 400.

    Google Scholar 

  • Miller, R. H.: 1978a, Astrophys. J., 223, 811.

    Google Scholar 

  • Miller, R. H.: 1978b, Astrophys. J., 224, 32.

    Google Scholar 

  • Ostriker, J. P. and Peebles, P. J. E.: 1973, Astrophys. J., 186, 467.

    Google Scholar 

  • Palmer, P. L. and Papaloizou, J.: 1982, Monthly Notices R. Astr. Soc., 199, 869.

    Google Scholar 

  • Palmer, P. L. and Papaloizou, J.: 1985, Monthly Notices R. Astr. Soc., 215, 691.

    Google Scholar 

  • Petit, J. M. and Henon, M.: 1986, Icarus, 66, 536.

    Google Scholar 

  • Quinn, P. J. and Goodman, J.: 1986, Astrophys. J., 309, 472.

    Google Scholar 

  • Rybicki, G. B.: 1971, Celest. Mech., 14, 15.

    Google Scholar 

  • Sancisi, R. and Van Albada, T. S.: 1987, in Observational Cosmology, eds. A. Hewitt et al., Dordrecht, Reidel p. 699.

    Google Scholar 

  • Spitzer, L.: 1958, Astrophys. J., 127, 17.

    Google Scholar 

  • Sulentic, J. W.: 1976, Astrophys. J., 213, 327.

    Google Scholar 

  • Thorne, R. M.: 1968, Astrophys. J., 151, 671.

    Google Scholar 

  • Toomre, A.: 1981, The Structure and Evolution of Normal Galaxies, ed. S. M. Fall and D. Lynden-Bell (Cambridge Univ. Press, N.Y.), p. 111.

    Google Scholar 

  • Toomre, A.: 1964, Astrophys. J., 139, 1217.

    Google Scholar 

  • Tremaine, S. and Weinberg, M.D.: 1984, Monthly Notices R. Astr. Soc., 209, 729.

    Google Scholar 

  • Valtacja, L.: 1990, Astr. Astrophys. 228, 37.

    Google Scholar 

  • Valtonen, M. J., Innanen, K. A. and Tahtinen, L.: 1984, Astrophys. Space Sci., 107, 209.

    Google Scholar 

  • Weinberg, M. D.: 1986, Astrophys. J., 300, 93.

    Google Scholar 

  • White, S. D. M.: 1983, Astrophys. J., 274, 53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valtonen, M.J., Valtaoja, L., Sundelius, B. et al. Dynamical friction on a satellite of a disk galaxy: The circular orbit. Celestial Mech Dyn Astr 48, 95–113 (1990). https://doi.org/10.1007/BF00049508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00049508

Keywords

Navigation