Skip to main content
Log in

On the measurement of dry deposition using imperfect sensors and in non-ideal terrain

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Important questions concerning the turbulent exchange of atmospheric pollutants between the air and natural surfaces urgently require answers, but sensors for many important species are not yet sufficiently well developed for use with standard micrometeorological methods. There is need, therefore, to develop methods by which deficient sensors can be used in micrometeorological applications. There is also need to extend micrometeorological methods to circumstances which do not satisfy the conventional perfect-site constraints. Here, methods based upon the assumption of cospectral similarity are explored. Initial tests indicate that it is possible to estimate daytime turbulent fluxes with sensors giving response times considerably greater than the values normally quoted for eddy correlation (e.g., 5 s instead of 1 s), and to compute first-order corrections for the error resulting from the lack of detection of high-frequency turbulence. It is suggested that a similar method might be used to derive flux data in terrain more complex than can be handled by conventional micrometeorology. The techniques outlined here should be applied only with caution, but appear adequate to permit the use of deficient sensors in some circumstances, and good sensors over some micrometeorologically deficient terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldocchi, D. D., Matt, D. R., McMillen, R. T., and Hutchison, B. A.: 1985, Evapotranspiration from an Oak-Hickory Forest, Proceedings, National Conference on Advances in Evapotranspiration, ASAE, St. Joseph, MI, pp. 414–422.

    Google Scholar 

  • Dyer, A. J.: 1975, ‘Measurement of Turbulent Fluxes by Fluxatron and NIFTI Techniques’, Atmos. Tech. 7, 24–29.

    Google Scholar 

  • Dyer, A. J., and Hicks, B. B.: 1970, ‘Flux-Gradient Relationships in the Constant Flux Layer’, Quart. J. Roy. Meteorol. Soc. 96, 715–721.

    Google Scholar 

  • Garratt, J. R.: 1978, ‘Flux Profile Relations Above Tall Vegetation’, Quart. J. Royal Meteorol. Soc. 104, 199–211.

    Google Scholar 

  • Hales, J. M., Hicks, B. B., and Miller, J. M.: 1987, ‘The Role of Research Measurement Networks as Contributors to Federal Assessment of Acid Deposition’, Bull. Amer. Meteorol. Soc., in press.

  • Hicks, B. B.: 1979, Some Micrometeorological Methods for Measuring Dry Deposition Rates, AICHE Symposium Series, 75, No. 188, 187–190.

  • Hicks, B. B.: 1985, ‘Application of Forest Canopy — Atmospheric Exchange Information’, in B. A. Hutchison and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publ. Co., Boston, pp. 631–644.

    Google Scholar 

  • Hicks, B. B., Hyson, P., and Moore, C. J.: 1975, ‘A Study of Eddy Fluxes over a Forest’, J. Appl. Meteorol. 14, 58–66.

    Google Scholar 

  • Hicks, B. B., Hess, G. D., and Wesely, M. L.: 1979, ‘Analysis of Flux-Profile Relationships Above Tall Vegetation — An Alternative View’, Quart. J. Roy. Meteorol. Soc. 105, 1074–1077.

    Google Scholar 

  • Hicks, B. B., Matt, D. R., McMillen, R. T., Womack, J. D., and Shelter, R. F.: 1983, in P. J. Samson (ed.), Eddy Fluxes of Nitrogen Oxides to a Deciduous Forest in Complex Terrain, Transactions, APCA Conference on Meteorology of Acidic Deposition, APCA, Pittsburgh, pp. 189–201.

    Google Scholar 

  • Huebert, B. J. and Roberts, C. H.: 1985, ‘The Dry Deposition of Nitric Acid to Grass’, J. Geophys. Res. 90, 2085–2090.

    Google Scholar 

  • Kaimal, T. C., Wyngaard, T. C., Izumi, Y., and Cate, O. R.: 1972, ‘Spectral Characteristics of Surface Layers Turbulence’, Quart. J. Roy. Meteorol. Soc. 98, 563–589.

    Google Scholar 

  • Kanemasu, E. T., Wesely, M. L., Hicks, B. B., and Heilman, J. L.: 1979, ‘Techniques for Calculating Energy and Mass Fluxes’, in B. J. Barfield and J. F. Gerber (eds.), Modification of the Aerial Environment of Crops, American Soc. of Agric. Eng., pp. 156–182.

  • McCaughey, J. H.: 1985, ‘Energy Balance Terms in a Mature Mixed Forest at Petawa, Ontario — A Case Study’, Boundary-Layer Meteorol. 31, 89–101.

    Google Scholar 

  • Pruitt, W. O., Morgan, D. L., and Lourence, J.: 1973, ‘Momentum and Mass Transfer in the Surface Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 99, 370–386.

    Google Scholar 

  • Thorn, A. S.: 1975, ‘Momentum, Mass, and Heat Exchange of Plant Communities’, in J. L. Monteith (ed.), Vegetation and the Atmosphere, Vol. I, Academic Press, London, pp. 57–109.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1972, ‘Cospectral Similarity in the Atmospheric Surface Layer’, Quart. J. Roy. Meteorol. Soc. 98, 590–603.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicks, B.B., McMillen, R.T. On the measurement of dry deposition using imperfect sensors and in non-ideal terrain. Boundary-Layer Meteorol 42, 79–94 (1988). https://doi.org/10.1007/BF00119876

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119876

Keywords

Navigation