Skip to main content
Log in

A new general method for the biosynthesis of stable isotope-enriched peptides using a decahistidine-tagged ubiquitin fusion system: An application to the production of mastoparan-X uniformly enriched with 15N and 15N/13C

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A new strategy is described for the production of peptides enriched with stable isotopes. Peptides of interest are expressed in Escherichia coli (E. coli) cells as recombinant fusion proteins with Saccharomyces cerevisiae ubiquitin. This method yields as much as 30–100 mg/l of isotope-enriched fusion proteins in minimal media. A decahistidine tag attached to the N-terminus of ubiquitin enables a one-step purification of the fusion protein via Ni2+-chelating affinity chromatography. The ubiquitin moiety is then easily and specifically cleaved off by a protease, yeast ubiquitin hydrolase. Since this enzyme is also expressed at a high level in E. coli cells and can be purified in one step, the presented strategy has an advantage in view of costs over others that use commercially available proteases. In addition, since ubiquitin fusion proteins easily refold, the fusion protein can be expressed either in a soluble form or as inclusion bodies. This flexibility enables us to prepare peptides that are unstable in a soluble state in E. coli cells. As an example, the expression and the uniform stable isotope enrichment with 15N and/or13 C are described for mastoparan-X, a tetradecapeptide known to activate GTP-binding regulatory proteins. An amide group at the C-terminus of this peptide can also be formed by our method. The presented system is considered powerful for the stable isotope enrichment of short peptides with proton resonances that are too severely overlapped to be analyzed solely by proton NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrieux, M., Leroy, E., Guittet, E., Ritco-Vonsovici, M., Mouratou, B., Minard, P., Desmadril, M. and Yon, J.M. (1995) Biochemistry, 34, 842–846.

    Google Scholar 

  • Anglister, J., Scherf, T., Zilber, B. and Levy, R. (1995) Biopolymers, 37, 383–389.

    Google Scholar 

  • Bax, A. and Davis, D.G. (1985) J. Magn. Reson., 65, 355–359.

    Google Scholar 

  • Bax, A. and Grzesiek, S. (1993) Acc. Chem. Res., 26, 131–138.

    Google Scholar 

  • Bodenhausen, G. and Ruben, D.J. (1980) Chem. Phys. Lett., 69, 185–189.

    Google Scholar 

  • Campbell, A.P. and Sykes, B.D. (1991) J. Magn. Reson., 93, 77–92.

    Google Scholar 

  • Campbell, A.P. and Sykes, B.D. (1993) Annu. Rev. Biophys. Biomol. Struct., 22, 99–122.

    Google Scholar 

  • Campbell, A.P., Wong, W.Y., Houston, Jr., M., Schweizer, F., Cachia, P.J., Irvin, R.T., Hindsgaul, O., Hodges, R.S. and Sykes, B.D. (1997) J. Mol. Biol., 267, 382–402.

    Google Scholar 

  • Carpenter, K.A. and Ni, F. (1992) J. Magn. Reson., 99, 192–197.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1982) J. Magn. Reson., 48, 402–417.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1983) J. Magn. Reson., 53, 423–442.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1991) Prog. NMR Spectrosc., 23, 43–92.

    Google Scholar 

  • Cordier-Ochsenbein, F., Guerois, R., Baleux, F., Huynh-Dinh, T., Chaffotte, A., Neumann, J.M. and Sanson, A. (1996) Biochemistry, 35, 10347–10357.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.

    Google Scholar 

  • Gilman, A.G. (1987) Annu. Rev. Biochem., 56, 615–649.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992) J. Am. Chem. Soc., 114, 6291–6293.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Am. Chem. Soc., 115, 12593–12594.

    Google Scholar 

  • Henry, G.D. and Sykes, B.D. (1992) Biochemistry, 31, 5284–5297.

    Google Scholar 

  • Higashijima, T., Uzu, S., Nakajima, T. and Ross, E.M. (1988) J. Biol. Chem., 263, 6491–6494.

    Google Scholar 

  • Ikura, M., Bax, A., Clore, G.M. and Gronenborn, A.M. (1990) J. Am. Chem. Soc., 112, 9020–9022.

    Google Scholar 

  • Jahnke, W., Baur, M., Gemmecker, G. and Kessler, H. (1995) J. Magn. Reson., B106, 86–88.

    Google Scholar 

  • Jelinek, R., Terry, T.D., Gesell, J.J., Malik, P., Perham, R.N. and Opella, S.J. (1997) J. Mol. Biol., 266, 649–655.

    Google Scholar 

  • Katopodis, A.G., Ping, D. and May, S.W. (1990) Biochemistry, 29, 6115–6120.

    Google Scholar 

  • Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496–514.

    Google Scholar 

  • Kusunoki, H., Wakamatsu, K., Sato, K., Miyazawa, T. and Kohno, T. (1998) Biochemistry, 37, 4782–4791.

    Google Scholar 

  • MacKenzie, K.R., Prestegard, J.H. and Engelman, D.M. (1997) Science, 276, 131–133.

    Google Scholar 

  • Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393–399.

    Google Scholar 

  • Mayo, K.H., Fan, F., Beavers, M.P., Eckardt, A., Keane, P., Hoekstra, W.J. and Andrade-Gordon, P. (1996) Biochim. Biophys. Acta, 1296, 95–102.

    Google Scholar 

  • McDonnell, P.A., Shon, K., Kim, Y. and Opella, S.J. (1993) J. Mol. Biol., 233, 447–463.

    Google Scholar 

  • Miller, H.I., Henzel, W.J., Ridgway, J.B., Kuang, W.-J., Chisholm, V. and Liu, C.-C. (1989) Biotechnology, 7, 698–704.

    Google Scholar 

  • Milon, A., Miyazawa, T. and Higashijima, T. (1990) Biochemistry, 29, 65–75.

    Google Scholar 

  • Mizutani, S., Mori, H., Shimazu, S., Sakaguchi, K. and Kobayashi, T. (1986) Biotechnol. Bioeng., 28, 204–209.

    Google Scholar 

  • Mori, H., Yano, T., Kobayashi, T. and Shimizu, S. (1979) J. Chem. Eng. Japan, 12, 313–319.

    Google Scholar 

  • Muhandiram, D.R. and Kay, L.E. (1994) J. Magn. Reson., B103, 203–216.

    Google Scholar 

  • Neri, D., Wider, G. and Wüthrich, K. (1992a) FEBS Lett., 303, 129–135.

    Google Scholar 

  • Neri, D., Wider, G. and Wüthrich, K. (1992b) Proc. Natl. Acad. Sci. USA, 89, 4397–4401.

    Google Scholar 

  • Ni, F., Zhu, Y. and Scheraga, H.A. (1995) J. Mol. Biol., 252, 656–671.

    Google Scholar 

  • Nilsson, B., Forsberg, G., Moks, T., Hartmanis, M. and Uhlén, M. (1992) Curr. Opin. Struct. Biol., 2, 569–575.

    Google Scholar 

  • Okada, A., Wakamatsu, K., Miyazawa, T. and Higashijima, T. (1994) Biochemistry, 33, 9438–9446.

    Google Scholar 

  • Özkaynak, E., Finley, D. and Varshavsky, A. (1984) Nature, 312, 663–666.

    Google Scholar 

  • Piotto, M., Saudek, V. and Sklenář, V. (1992) J. Biomol. NMR, 2, 661–665.

    Google Scholar 

  • Ripoll, D.R. and Ni, F. (1992) Biopolymers, 32, 359–365.

    Google Scholar 

  • Schaffner, W. and Weissmann, C. (1973) Anal. Biochem., 56, 502–514.

    Google Scholar 

  • Schägger, H. and von Jagow, G. (1987) Anal. Biochem., 166, 368–379.

    Google Scholar 

  • Scherf, T., Hiller, R., Naider, F., Levitt, M. and Anglister, J. (1992) Biochemistry, 31, 6884–6897.

    Google Scholar 

  • Schwalbe, H., Fiebig, K.M., Buck, M., Jones, J.A., Grimshaw, S.B., Spencer, A., Glaser, S.J., Smith, L.J. and Dobson, C.M. (1997) Biochemistry, 36, 8977–8991.

    Google Scholar 

  • Shaka, A.J., Keeler, J. and Freeman, R. (1983) J. Magn. Reson., 53, 313–340.

    Google Scholar 

  • Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64, 547–552.

    Google Scholar 

  • Simcox, M.E., Huvar, A., Simcox, T.G. and Vega, Q. (1994) Strategies, 7, 68–69.

    Google Scholar 

  • Studier, F.W., Rosenberg, A.H., Dunn, J.J. and Dubendorff, J.W. (1990) Methods Enzymol., 185, 60–89.

    Google Scholar 

  • Suzuki, K., Shimoi, H., Iwasaki, Y., Kawahara, T., Matsuura, Y. and Nishikawa, Y. (1990) EMBO J., 9, 4259–4265.

    Google Scholar 

  • Takahashi, K., Okamoto, H., Seino, H. and Noguchi, M. (1990) Biochem. Biophys. Res. Commun., 169, 524–530.

    Google Scholar 

  • Van de Ven, F.J.M., van Os, J.W., Aelen, J.M., Wymenga, S.S., Remerowski, M.L., Konings, R.N. and Hilbers, C.W. (1993) Biochemistry, 32, 8322–8328.

    Google Scholar 

  • Wakamatsu, K., Okada, A., Miyazawa, T., Masui, Y., Sakakibara, S. and Higashijima, T. (1987) Eur. J. Biochem., 163, 331–338.

    Google Scholar 

  • Wang, Z., Jones, J.D., Rizo, J. and Gierasch, L.M. (1993) Biochemistry, 32, 13991–13999.

    Google Scholar 

  • Williams, K.A., Farrow, N.A., Deber, C.M. and Kay, L.E. (1996) Biochemistry, 35, 5145–5157.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995a) J. Biomol. NMR, 5, 67–81.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995b) J. Biomol. NMR, 6, 135–140.

    Google Scholar 

  • Wittekind, M. and Mueller, L. (1993) J. Magn. Reson., B101, 201–205.

    Google Scholar 

  • Yao, L.J. and Mayo, K.H. (1996) Biochem. J., 315, 161–170.

    Google Scholar 

  • Zhu, G. and Bax, A. (1990) J. Magn. Reson., 90, 405–410.

    Google Scholar 

  • Zhu, G. and Bax, A. (1992) J. Magn. Reson., 100, 202–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohno, T., Kusunoki, H., Sato, K. et al. A new general method for the biosynthesis of stable isotope-enriched peptides using a decahistidine-tagged ubiquitin fusion system: An application to the production of mastoparan-X uniformly enriched with 15N and 15N/13C. J Biomol NMR 12, 109–121 (1998). https://doi.org/10.1023/A:1008254603368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008254603368

Navigation