Skip to main content
Log in

A modified Hull cell with forced electrolyte flow: simulation of industrial electroplating conditions

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Hull cells are often used to determine the optimum current density range for industrial electroplating. However, these cells do not reproduce correctly the hydrodynamic conditions. The design and the use of a modified Hull cell able to reproduce constant hydrodynamic conditions at the cathode for a large range of circulation speeds are described. Mass transfer and current distribution at the cathode have been evaluated in this cell for copper and zinc deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Pinkerton, ‘Current and Metal Distribution’ in‘Electroplating Engineering Handbook’ (edited by L. J. Durney), 4th edn. Van Nostrand Reinhold, New York (1984) pp. 461–73.

    Google Scholar 

  2. N. Ibl, Surf. Technol. 10 (1980) 81.

    Google Scholar 

  3. Norm 50957 DIN, ‘Galvanisierungsprüfung mit der Hull-Zelle’, TAB 175, Beuth Verlag GmbH, Berlin and Köln (1983).

  4. M. Matlosz, C. Creton, C. Clerc and D. Landolt, J. Electrochem. Soc. 134 (1987) 3015.

    Google Scholar 

  5. D. Pletcher and F. C. Walsh, ‘Industrial Electrochemistry’, 2nd edn., Chapman & Hall, London and New York (1990) pp. 389–91.

    Google Scholar 

  6. R. H. Rousselot, Metal Finish. 57 (1959) 56.

    Google Scholar 

  7. B. M. Luce, ‘Current Distribution and Plating Tests’ in ‘Electroplaters' Process Control Handbook’ (edited by D. G. Foulke) Robert E. Krieger, Huntington, New York (1975) pp. 113–32.

    Google Scholar 

  8. R. Terakado and H. Nagasaka, Metal Finish. 77 (1979) 17.

    Google Scholar 

  9. W. R. Parrish and J. Newman, J. Electrochem. Soc. 116 (1969) 169.

    Google Scholar 

  10. , 117 (1970) 43.

    Google Scholar 

  11. J. Newman, 113 (1966) 1235.

    Google Scholar 

  12. R. V. Homsy and J. Newman, 121 (1974) 1448.

    Google Scholar 

  13. H. M. Wang, S. F. Chen, T. J. O'Keefe, M. Degrez and R. Winand, J. Appl. Electrochem. 19 (1989) 174.

    Google Scholar 

  14. A. Tvarusko and L. S. Watkins, Electrochim. Acta 14 (1969) 1109.

    Google Scholar 

  15. , J. Electrochem. Soc. 118 (1971) 580.

    Google Scholar 

  16. M. Degrez and R. Winand, Electrochim. Acta 29 (1984) 365.

    Google Scholar 

  17. D. J. Pickett, ‘Mass Transfer Design Equations For Electrochemical Reactors’ in ‘Electrochemical Reactor Design’ 2nd edn., Elsevier, Amsterdam and Oxford (1979) pp. 121–70.

    Google Scholar 

  18. D. J. Pickett and K. Ong, Electrochim. Acta 19 (1974) 875.

    Google Scholar 

  19. M. Degrez, A. A. Rodriguez Fajardo and R. Winand, Oberfläche/Surface 30 (1989–8) 20, (1989–9) 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degrez, M., Duchêne, A., Fontana, A. et al. A modified Hull cell with forced electrolyte flow: simulation of industrial electroplating conditions. J Appl Electrochem 23, 1285–1292 (1993). https://doi.org/10.1007/BF00234814

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234814

Keywords

Navigation