Skip to main content
Log in

The mobility of oxygen ions in CaF2

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The a.c. conductivity of CaF2 samples containing a fine dispersion of CaO particles has been measured in the temperature range 630 to 1100 K. The conductivity of the dispersed solid electrolyte is two orders of magnitude higher than that for pure polycrystalline CaF2 in the middle of the temperature range. Transport measurements on pure single crystals of CaF2 and polycrystalline samples, with and without CaO dispersion, using Fe+FeO and pure Fe as electrodes, clearly indicate that fluorine ions are the only migrating ionic species with a transport number of almost unity, contrary to the suggestion of Chou and Rapp [1, 2]. The enhanced conductivity of the dispersed solid electrolyte probably arises from two effects. A small solubility of oxygen in CaF2 results in an increase in the fluorine vacancy concentration and conductivity. Adsorption of fluorine ions on the surface of the dispersed particles of CaO results in a space charge region around each particle with enhanced conductivity. Measurements on a galvanic cell incorporating CaF2 as the solid electrolyte and oxide electrodes show that the e.m.f. is a function of the activity of CaO at the electrode/electrolyte interface. The response to an oxygen potential gradient is, therefore, through an exchange reaction, which establishes an equivalent fluorine potential at the electrode/electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Ure Jr,J. Chem. Phys. 26 (1957) 1363.

    Google Scholar 

  2. W. Bollmann and H. Henniger,Phys. Stat. Sol. (a) 11 (1973) 367.

    Google Scholar 

  3. Idem, ibid. 16 (1973) 187.

    Google Scholar 

  4. L. E. Nagel and M. O'Keefe, in ‘Fast Ion Transport in Solids’ (edited by W. Van Gool), North Holland, Amsterdan (1973) p. 165.

    Google Scholar 

  5. J. M. Reau and J. Portier, in ‘Solid Electrolytes’ (edited by P. Hagenmuller and W. Van Gool), Academic Press, New York (1978) p. 313.

    Google Scholar 

  6. T. L. Markin, in ‘E.m.f. Measurements in High Temperature Systems’ (edited by C. B. Alcock), The Institution of Mining and Metallurgy, London (1968) p. 91.

    Google Scholar 

  7. T. N. Rezukhina and T. F. Sisoeva,J. Chem. Thermody. 11 (1979) 1095.

    Google Scholar 

  8. S. F. Chou and R. A. Rapp, in ‘High Temperature Metal Halide Chemistry’ (edited by D. L. Hildenbrand and D. D. Cubicciotti), The Electrochemical Society, N.J. (1978) p. 392.

    Google Scholar 

  9. Idem, J. Electrochem. Soc. 130 (1983) 506.

    Google Scholar 

  10. T. A. Ramanarayanan, M. L. Narula and W. L. Worrell,ibid. 126 (1979) 1360.

    Google Scholar 

  11. K. T. Jacob, D. B. Rao and H. G. Nelson,ibid. 125 (1978) 758.

    Google Scholar 

  12. V. Levitskii, A. Hammou, M. Dulcot and C. Deportes,J. Chim. Phys. 73 (1976) 305.

    Google Scholar 

  13. S. Fujitsu, M. Miyayama, K. Koumoto, H. Yanagida and T. Kanazawa,J. Mater. Sci. 20 (1985) 2103.

    Google Scholar 

  14. A. Khandkar, V. B. Tare and J. B. Wagner Jr,Rev. Chim. Minerale 23 (1986) 274.

    Google Scholar 

  15. N. Vaidehi, R. Akila, A. K. Shukla and K. T. Jacob,Mater. Res. Bull. 21 (1986) 909.

    Google Scholar 

  16. J. Maier,J. Phys. Chem. Solids 46 (1985) 309.

    Google Scholar 

  17. J. Maier,Mater. Res. Bull. 20 (1985) 383.

    Google Scholar 

  18. D. R. Stull et al., ‘JANAF Thermochemical Tables’, 2nd edn, NSRDS-NBS 37, US Dept. of Commerce, Washington D.C. (1971).

    Google Scholar 

  19. B. C. H. Steele, in ‘Electromotive Force Measurements in High Temperature Systems’ (edited by C. B. Alcock), The Institution of Mining and Metallurgy, London (1968) p. 3.

    Google Scholar 

  20. K. T. Jacob, G. M. Kale, R. Akila and A. K. Shukla,High Temp. Mater. Processes 7 (1986) 141.

    Google Scholar 

  21. E. M. Levin and H. F. McMurdie, ‘Phase Diagrams for Ceramists’, Supplements, Am. Ceram. Soc. (1969) and (1975).

  22. R. Benz and C. Wagner,J. Phys. Chem. 65 (1961) 1308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akila, R., Jacob, K.T. The mobility of oxygen ions in CaF2 . J Appl Electrochem 20, 294–300 (1990). https://doi.org/10.1007/BF01033608

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01033608

Keywords

Navigation