Skip to main content
Log in

Histochemistry of nucleotidyl cyclases and cyclic nucleotide phosphodiesterases

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • AL-AZZAWI, M. J. & HALL, J. L. (1976) Cytochemical localization of adenylate cyclase activity in root tips.Plant Sci. Lett. 6, 285–9.

    Google Scholar 

  • ARDAILLOU, N., NIVEZ, M.-P. & ARDAILLOU, R. (1985) Stimulation of guanylate cyclase by atrial natriuretic factor in isolated human glomeruli.FEBS Lett. 189, 8–12.

    Google Scholar 

  • ARIANO, M. A. & ADINOLFI, A. M. (1977) Subcellular localization of cyclic nucleotide phosphodiesterase in the caudate nucleus.Exp. Neurol. 55, 84–94.

    Google Scholar 

  • ARIANO, M. A. & MATUS, A. I. (1981) Ultrastructural localization of cyclic GMP and cyclic AMP in rat striatum.J. cell. Biol. 91, 287–92.

    Google Scholar 

  • ARIANO, M. A., LEWICKI, J. A., BRANDWEIN, H. J. & MURAD, F. (1982a) Immunohistochemical localization of guanylate cyclase within neurons of rat brain.Proc. Natn. Acad. Sci. U.S.A. 79, 1316–20.

    Google Scholar 

  • ARIANO, M. A., BRIGGS, G. A. & MCAFEE, D. A. (1982b) Cellular localization of cyclic nucleotide changes in rat superior cervical ganglion.Cell. molec. Neurobiol. 2, 142–56.

    Google Scholar 

  • ARIANO, M. A. (1983) Distribution of components of the guanosine 3′,5′-phosphate system in rat caudate-putamen.J. Neurosci. 10, 707–23.

    Google Scholar 

  • BIGGIO, G. & GUIDOTTI, A. (1976) Climbing fiber activation and 3′,5′-cyclic guanosine monophosphate (cGMP) content in cortex and deep nuclei of cerebellum.Brain Res. 107, 365–73.

    Google Scholar 

  • BIRNBAUMER, L., CODINA, J., MATTERA, R., CERIONE, R. A., HILDEBRANDT, J. D., SUNYER, T., ROJAS, F. J., CARON, M. G., LEFKOWITZ, R. J. & IYENGAR, R. (1985) Structural basis of adenylate cyclase stimulation and inhibition by distinct guanine nucleotide regulatory proteins. In:Molecular Mechanisms of Transmembrane Signalling, Molecular Aspects of Cellular Regulation, Vol. 4 (edited by COHEN, P. & HOUSLAY, M. D.) pp. 131–82. Amsterdam: Elsevier.

    Google Scholar 

  • BLOOM, F. E., HOFFER, B. J., BATTENBERG, E. R., SIGGINS, G. R., STEINER, A. L., PARKER, C. W. & WEDNER, H. J. (1972) Adenosine 3′,5′-monophosphate is localized in cerebellar neurons: Immunofluorescence evidence.Science 177, 436–8.

    Google Scholar 

  • BLOOM, F. E. (1975) The role of cyclic nucleotides in central synaptic function.Rev. Physiol. Biochem. Pharmac. 74, 1–103.

    Google Scholar 

  • BONNE, D., NICOLAS, P., LAUBER, M., CARNIER, M., TIXIER-VIDAL, A. & COHEN, P. (1977) Evidence for an adenylate cyclase activity in neurosecretory granule membranes from bovine neurohypophysis.Eur. J. Biochem. 78, 337–42.

    Google Scholar 

  • BÖLDICKE, T. W., SCHUBERT-REHBERG, K. & WOMBACHER, H. (1986) Purification of an enzyme aggregate containing 3′,5′-cyclic nucleotide phosphodiesterase and nucleotidase.FEBS Lett. 204, 125–8.

    Google Scholar 

  • BOUHELAL, R., GUILLON, G., HOMBURGER, V. & BOCKAERT, J. (1985) Forskolin-induced changes of the size of adenylate cyclase.J. biol. Chem. 260, 10901–4.

    Google Scholar 

  • BRAY, J. J., KON, C. M. & BRECKENRIDGE, B. MC L. (1971) Adenyl cyclase, cyclic nucleotide phosphodiesterase and axoplasmic flow.Brain Res. 26, 385–94.

    Google Scholar 

  • BUTCHER, R. W., HO, R. J., MENG, H. C. & SUTHERLAND, E. W. (1965) Adenosine 3′,5′-monophosphate in biological materials. II. The measurement of cAMP in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine.J. biol. Chem. 240, 4515–23.

    Google Scholar 

  • CARNEGIE, P. R., DURKLEY, P. R., KEMP, B. E. & MURRAY, A. W. (1974) Phosphorylation of selected serine and threonine residues in myelin basic protein by endogenous and exogenous protein kinases.Nature 249, 147–50.

    Google Scholar 

  • CHAN-PALAY, V. & PALAY, S. L. (1979) Immunocytochemical localization of cyclic GMP: light and electron microscopic evidence for involvement of neuroglia.Proc. natn. Acad. Sci. U.S.A. 76, 1485–8.

    Google Scholar 

  • CHENG, H. & FARQUHAR, M. G. (1976) Presence of adenylate cyclase activity in Golgi and other fractions from rat liver.J. cell. Biol. 70, 660–84.

    Google Scholar 

  • CHEUNG, W. Y. (1967) 3′,5′-nucleotide phosphodiesterase: pronounced stimulation by snake venom.Biochem. biophys. Res. Commun. 29, 478–82.

    Google Scholar 

  • CUTLER, L. S., CHRISTIAN, C. P. & FEINSTEIN, M. B. (1985) Cytochemical localization of adenylate cyclase in the dense tubule system of human blood platelets stimulated by forskolin, prostacyclin and prostaglandin D2.Biochim. biophys. acta 845, 403–11.

    Google Scholar 

  • CONTI, M., KASSON, B. G. & HSUEH, A. J. W. (1984) Hormonal regulation of 3′,5′-adenosine monophosphate phosphodiesterases in cultured rat granulosa cells.Endocrinology 114, 2361–8.

    Google Scholar 

  • COOPER, D. M. F. (1983) Receptor mediated stimulation and inhibition of adenylate cyclase.Curr. Topics membr. Trans. 18, 67–84.

    Google Scholar 

  • DALY, J. W. (1984) Forskolin, adenylate cyclase, and cell physiology: An overview.Adv. Cycl. Nucl. Prot. Phosph. Res. 17, 81–9.

    Google Scholar 

  • DARTT, D. A., TORP-PEDERSEN, C. & THORN, N. A. (1981) Effects of Ca2+ and calmodulin on cyclic nucleotide metabolism in neurosecretosomes isolated from ox hypophyses.Brain Res. 204, 121–128.

    Google Scholar 

  • DAVOREN, P. R. & SUTHERLAND, E. W. (1963) The effect ofl-epinephrin and other agents on the synthesis and release of adenosine 3′,5′-phosphate by whole pigeon erythrocytes.J. biol. Chem. 238, 3009–15.

    Google Scholar 

  • DE HAËN, C. (1976) The non-stoichiometric floating receptor model for hormone sensitive adenylyl cyclase.J. theor. Biol. 58, 383–400.

    Google Scholar 

  • DE MAZANCOURT, P. & GIUDICELLI, Y. (1984) Guanine nucleotides and adenosine ‘R i’-site analogues stimulate the membrane bound low-KM cyclic AMP phosphodiesterase of rat adipocytes.FEBS Lett. 173, 385–8.

    Google Scholar 

  • DE ROBERTIS, E., ARNAIZ, G. R. D. L., ALBERICI, M., BUTCHER, R. W. & SUTHERLAND, E. W. (1967) Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex.J. biol. Chem. 242, 3487–93.

    Google Scholar 

  • DINI, G. & DEL ROSO, M. (1983) Differences of adenylate cyclase localization in guinea pig peritoneal macrophages under different physiological conditions. An ultracytochemical study.Histochem. J. 15, 911–18.

    Google Scholar 

  • DOUSA, T. P., BARNES, L. D., ONG, S. H. & STEINER, A. L. (1977) Immunohistochemical localization of 3′,5′-cAMP and 3′,5′-cGMP in rat renal cortex: effect of parathyroid hormone.Proc. natn. Acad. Sci. U.S.A. 74, 3569–73.

    Google Scholar 

  • EL MESTIKAWY, S. & HANON, M. (1986) Is dopamine-induced inhibition of adenylate cyclase involved in the autoreceptor-mediated negative control of tyrosine hydroxylase in striatal dopaminergic terminals.J. Neurochem. 47, 1425–33.

    Google Scholar 

  • ENTMAN, M. L., LEVEY, G. S. & EPSTEIN, S. E. (1969) Demonstration of adenyl cyclase activity in canine cardial sarcoplasmic reticulum.Biochem. biophys. Res. Commun. 35, 728–33.

    Google Scholar 

  • EPSTEIN, P. M., PLEDGER, W. J., GARDNER, E. A., STANCEL, G. M. THOMPSON, W. J. & STRADA, S. J. (1978) Activation of mammalian cyclic AMP phosphodiesterases by trypsin.Biochim. biophys. acta 527, 442–5.

    Google Scholar 

  • ERNEUX, C., MIOT, F. & DUMONT, J. E. (1985) The control mechanisms of cyclic nucleotide phosphodiesterase activities—regulation potential of cAMP catabolism. In:Hormones and Cell Regulation, Vol. 9 (edited by DUMONT, J. E., HAMBRECHT, B. & NUNEZ, J.), pp. 169–184. Amsterdam: Elsevier.

    Google Scholar 

  • FERRENDELLI, J. A., CHANG, M. M. & KINSCHERF, D. A. (1974) Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids.J. Neurochem. 22, 535–40.

    Google Scholar 

  • FINE, A. S., EGNOR, R. W., FORRESTER, E. & STAHL, S. S. (1982) Adenylate cyclase localization in unfixed specimens of rat oral mucosa and isolated mitochondria.J. Histochem. Cytochem. 30, 1171–8.

    Google Scholar 

  • FLORENDO, N. T., BARRNETT, R. J. & GREENGARD, P. (1971) Cyclic 3′,5′-nucleotide phosphodiesterase: cytochemical localization in cerebral cortex.Science 173, 745–8.

    Google Scholar 

  • FLORENDO, N. T., PITCOCK, A. J. & MUIRHEAD, E. E. (1978) Cyclic 3′,5′-nucleotide phosphodiesterase: cytochemical localization in rat renomedullary interstitial cells.J. Histochem. Cytochem. 26, 441–51.

    Google Scholar 

  • FRANCIS, S. H. & KONO, T. (1982) Hormone-sensitive cAMP phosphodiesterase in liver and fat cells.Molec. cell. Biochem. 42, 109–16.

    Google Scholar 

  • FREY, W. H. 2ND, SENOGLES, S. E., HESTON, L. L., TUASON, V. B. & NICOL, S. E. (1980) Catecholamine-sensitive guanylate cyclase from human caudate nucleus.J. Neurochem. 35, 1418–30.

    Google Scholar 

  • FUJIMOTO, K., TOIBANA, M. & OGAWA, K. (1981) New cytochemical method for adenylate cyclase and guanylate cyclase with dimethyl sulfoxide.Acta histochem. cytochem. 14, 687–704.

    Google Scholar 

  • FUJIMOTO, K. & OGAWA, K. (1982) Enzyme cytochemical study of rat cardiac muscle. I. Adenylate cyclase and guanylate cyclase.Acta histochem. cytochem. 15, 325–37.

    Google Scholar 

  • GILMAN, A. G. (1984) G proteins and dual control of adenylate cyclase.Cell 36, 577–79.

    Google Scholar 

  • GOLDSTEIN, M., ANAGOSTE, B. & SHIRRON, C. (1973) The effect of trivastal, haloperidol and dibutyryl cyclic AMP on [C14] dopamine synthesis in rat striatum.J. Pharm. Pharmac. 25, 348–51.

    Google Scholar 

  • GRAB, D. J., CARLIN, R. K. & SIEKEVITZ, P. (1981) Function of calmodulin in postysynaptic densities. I. Presence of a calmodulin-activatable cyclic nucleotide phosphodiesterase activity.J. cell. Biol. 89, 433–9.

    Google Scholar 

  • GREENGARD, P. & KEBABIAN, J. W. (1974) Presynaptic and postsynaptic roles of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system.Fedn Proc. 33, 1059–67.

    Google Scholar 

  • GREENBERG, L. H., TROYER, E. H., FERRENDELLI, J. A. & WEISS, B. (1978) Enzymatic regulation of the concentration of cyclic GMP in mouse brain.Neuropharmacology 17, 737–45.

    Google Scholar 

  • HARDMAN, J. G. & SUTHERLAND, E. W. (1969) Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′-monophosphate from guanosine triphosphateJ. biol. Chem. 244, 6363–70.

    Google Scholar 

  • HERVONEN, H. & RECHARDT, L. (1976) Histochemical localization of adenylate cyclase in cultured sympathetic neurons.Histochemistry 48, 43–50.

    Google Scholar 

  • HIDAKA, H., YAMAKI, T., OCHIAI, Y., ASANO, T. & YAMABE, H. (1977) Cyclic 3′,5′-nucleotide phosphodiesterase determined in various human tissues by DEAE-cellulose chromatography.Biochem. biophys. acta 484, 398–407.

    Google Scholar 

  • HIDAKA, H., TANAKA, T. & ITOH, H. (1984) Selective inhibitors of three forms of cyclic nucleotide phosphodiesterases.Trends Pharmaco. Sci. 5, 237–8.

    Google Scholar 

  • HO, H. C., TEO, T. S., DESAI, R. & WANG, J. H. (1976) Catalytic and regulatory properties of two forms of bovine heart cyclic nucleotide phosphodiesterase.Biochim. biophys. acta 429, 461–73.

    Google Scholar 

  • HOWELL, S. L. & WHITFIELD, M. (1972) Cytochemical localization of adenyl cyclase activity in rats islands of Langerhans.J. Histochem. Cytochem. 20, 873–9.

    Google Scholar 

  • JACOBS, S. & CUATRECASAS, P. (1976) The mobile receptor hypothesis and ‘cooperativity’ of hormone binding.Biochim. biophys. acta 433, 482–95.

    Google Scholar 

  • JAKOBS, K. H., WATANABE, Y. & BAUER, S. (1986) Interaction between the hormone-sensitive adenylate cyclase system and the phosphoinositide metabolizing pathway in human platelets.J. Cardiovasc. Pharmac. 8, 561–4.

    Google Scholar 

  • JOHNSON, R. A. & WELDEN, J. (1977) Characteristics of the enzymatic hydrolysis of 5′-adenylyl imidodiphosphate: Implications for the stydy of adenylate cyclase.Arch. Biochem. Biophys. 183, 216–27.

    Google Scholar 

  • KANG, Y.-H., SAHAI, A., CRISS, W. E. & WEST, W. L. (1982) Ultracytochemical localization of estrogen-stimulated guanylate cyclase in rat uterus.J. Histochem. Cytochem. 30, 331–42.

    Google Scholar 

  • KARNUSHINA, I., TOTH, I., DUX, E. & JOO, F. (1980) Presence of the guanylate cyclase in brain capillaries: Histochemical and biochemical evidence.Brain Res. 189, 588–92.

    Google Scholar 

  • KEBABIAN, J. W., STEINER, A. L. & GREENGARD, P. (1975) Muscarinic cholinergic regulation of cyclic guanosine 3′,5′-monophosphate in autonomic ganglia: possible role in synaptic transmission.J. Pharmac. exp. Ther. 193, 474–88.

    Google Scholar 

  • KEMPEN, H. J. M., DE PONT, J. J. H. H. M. & STADHOUDERS, A. M. (1978) The cytochemical localization of adenylate cyclase: Fact or artefact.J. Histochem. Cytochem. 26, 298–312.

    Google Scholar 

  • KEPPENS, S. & DE WULF, H. (1984) Vasopressin and angiotensin control the activity of liver phosphodiesterase.Biochem. J. 222, 277–80.

    Google Scholar 

  • KIMURA, H., MITTAL, C. K. & MURAD, F. (1975) Increases in cyclic GMP levels in brain and liver with sodium azide an activator of guanylate cyclase.Nature 257, 700–2.

    Google Scholar 

  • KINCAID, R. L., STITH-COLEMAN, J. E. & VAUGHAN, M. (1985) Proteolytic activation of calmodulin-dependent cyclic nucleotide phosphodiesterase,J. biol. Chem. 260, 9009–16.

    Google Scholar 

  • KINCAID, R. L., BALABAN, C. D. & BILLINGSLEY, M. L. (1987) Differential localization of calmodulin-dependent enzymes in rat brain: Evidence for selective expression of cyclic nucleotide phosphodiesterase in specific neurons.Proc. natn. Acad. Sci. U.S.A. 84, 1118–22.

    Google Scholar 

  • KING, L. E., FLORENDO, N. T., SOLOMON, S. S. & HASHIMOTO, K. (1974) Cyclic 3′,5′-nucleotide phosphodiesterase. I. Histochemical localization in rat skin.J. invest. Dermat. 62, 485–92.

    Google Scholar 

  • KUO, J. F. & GREENGARD, P. (1970) Cyclic nucleotide-dependent protein kinase.J. biol. Chem. 245, 4067.

    Google Scholar 

  • LEE, T. P., KUO, J. F. & GREENGARD, P. (1972) Role of muscarinic cholinergic receptors in regulation of guanosine 3′,5′-monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle.Proc. natn. Acas. Sci. U.S.A. 69, 3287–91.

    Google Scholar 

  • LEFKOWITZ, R. J., STADEL, J. M. & CARON, M. G. (1983) Adenylate cyclase-coupled β-adrenergic receptors.A. Rev. Biochem. 52, 159–86.

    Google Scholar 

  • LEMAY, A. & JARETT, L. (1975) Pitfalls in the use of lead nitrate for the histochemical demonstration of adenylate cyclase activity.J. cell. Biol. 65, 39–50.

    Google Scholar 

  • LIAO, S., LIN, A. H. & TYMOCZKO, J. L. (1971) Adenyl cyclase of cell nuclei isolated from rat ventral prostate.Biochim. biophys. acta 230, 535–8.

    Google Scholar 

  • LOTEN, E. G, ASSIMACOPOULOS-JEANNET, F. D., EXTON, J. H. & PARK, C. R. (1978) Stimulation of a low KM phosphodiesterase from liver by insulin and glucagon.J. biol. Chem. 253, 746–57.

    Google Scholar 

  • LOTEN, E. G. & REDSHAW-LOTEN, J. C. (1986) Stimulation of low KM cyclic AMP phosphodiesterase by sulfhydryl modification.Int. J. Biochem. 18, 847–52.

    Google Scholar 

  • MANGANIELLO, V. C., YAMAMOTO, T., ELKS, M., LIN, M. C. & VAUGHAN, M. (1984) Regulation of specific forms of cyclic nucleotide phosphodiesterases in cultured cells.Adv. Cyclic Nucl. Phosphor. Res. 16, 291–301.

    Google Scholar 

  • MAO, C. C., GUIDOTTI, A. & COSTA, E. (1974) Interactions between γ-aminobutyric acid and guanosine 3′,5′-monophosphate in rat cerebellum.Molec. Pharmac. 10, 736–45.

    Google Scholar 

  • MARCHMONT, R. J. & HOUSLAY, M. D. (1980) Insulin triggers cyclic AMF-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase.Nature 286, 904–6.

    Google Scholar 

  • MARTINS, T. J., MUMBY, M. C. & BEAVO, J. A. (1982) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues.J. biol. Chem. 257, 1973–9.

    Google Scholar 

  • MASUR, S. K., HOLTZMAN, E., SCHWARTZ, I. L. & WALTER, R. (1971) Correlation between pinocytosis and hydrosmosis induced by neurohypophyseal hormones and mediated by adenosine 3′,5′-cyclic monophosphate,J. Cell. Biol. 49, 582–94.

    Google Scholar 

  • MAYER, D., EHEMANN, V., HACKER, H. J., KLIMEK, F. & BANNASCH, P. (1985) Specificity of cytochemical demonstration of adenylate cyclase in liver using adenylate (β,γ-methylene) diphosphate as substrate.Histochemistry 82, 135–40.

    Google Scholar 

  • MC KEEL, D. W. & JARETT, L. (1974) The enrichment of adenylate cyclase in the plasma membrane and Golgi subcellular fractions of porcine adenohypophysis.J. cell Biol. 62, 231–6.

    Google Scholar 

  • MIKI, N., NAGANO, M. & KURIYAMA, K. (1976) Catalase activates cerebral guanylate cyclase in the presence of sodium azide.Biochem. biophys. Res. Commun. 72, 952–9.

    Google Scholar 

  • MINNEMAN, K. P. (1976) Cyclic nucleotide phosphodiesterase in rat neostriatum: multiple isoelectric forms with similar kinetic properties.J. Neurochem. 27, 1181–9.

    Google Scholar 

  • MIYAMOTO, E., KUO, J. F. & GREENGARD, P. (1969) Cyclic nucleotide-dependent protein kinase.J. biol. Chem. 244, 6395.

    Google Scholar 

  • MIYAMOTO, E. & KAKIUCHI, S. (1974)In vitro andin vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3′,5′-monophosphate-dependent protein kinases in brain.J. biol. Chem. 249, 2569–77.

    Google Scholar 

  • MIYAMOTO, E., KAKIUCHI, S. & KAKIMOTO, Y. (1974)In vitro andin vivo phosphorylation of myelin basic protein by cerebral protein kinases.Nature 249, 150–1.

    Google Scholar 

  • MIZUKAMI, Y. MATSUBARA, F. & MATSUKAWA, S. (1982) Localization of adenylate cyclase and 5′-nucleotidase activities in human thyroid follicular cells.Histochemistry 74, 9–20.

    Google Scholar 

  • MIZUKAMI, Y. (1983) Histochemical and biochemical study on adenylate cyclase and 5′-nucleotidase activity in thyroid glands with normal and various thyroid diseases.Acta Pathol. Jpn. 33, 895–906.

    Google Scholar 

  • MOSES, H. L. & ROSENTHAL, A. S. (1968) Pitfalls in the use of lead ion for histochemical localization of nucleoside phosphatases.J. Histochem. Cytochem. 16, 530–9.

    Google Scholar 

  • MÜLLER, U., MUNZ, K. & WASER, P. G. (1985) Ultrahistochemical localization of adenylate cyclase activity in the electric organ of Torpedo marmorata.Histochemistry 82, 429–33.

    Google Scholar 

  • MURAD, F., MITTAL, C., ARNOLD, W. P., ICHIHARA, K., BRAUGHLER, M. & EL-ZAYAT, M. (1978) Properties and regulation of guanylate cyclase: activation by azide, nitro compounds and hydroxyl radical and effects of heme containing proteins. InMolecular Biology and Pharmacology of Cyclic Nucleotides (edited by FOLCO, G. & PAOLETTI, R.), pp. 33–42. Amsterdam, New York: Elsevier/North-Holland.

    Google Scholar 

  • NAGASAKA, A., HIDAKA, H., NAKAGAWA, H., NAKAI, A., OHYAMA, T., AONO, T., MASUNAGA, R. & IWASE, K. (1986) Effect of somatostatin and dopaminergic agents on bovine pituitary phosphodiesterase activity.Neuroendocrinology 43, 410–15.

    Google Scholar 

  • NARINDRASORASAK, S. & SANWAL, B. D. (1986) Purification and polyamine activation of high-affinity 3′,5′-cAMP phosphodiesterase from rabbit muscle.Biochem. cell. Biol. 64, 930–5.

    Google Scholar 

  • NATHANSON, J. A. & GREENGARD, P. (1977) Second messengers in the brain.Scient. Amer. 237, 108–19.

    Google Scholar 

  • NEMOZ, G. & PRINGENT, A. F. (1984) Cyclic nucleotide phosphodiesterase in the vertebrates.Biochimie 66, 139–50.

    Google Scholar 

  • NOMURA, H. (1978) Histochemical localization of adenylate cyclase and phosphodiesterase activities in the folliate papillae of the rabbit. I. Light microscopic observations.Chem. Senses Flavour 3, 319–24.

    Google Scholar 

  • NOMURA, H. & ASANUMA, N. (1982) Histochemical localization of adenylate cyclase activity in some mammalian taste papillae.Chem. Senses 7, 71–80.

    Google Scholar 

  • NORTHUP, J. K. (1985) Overview of the guanine nucleotide regulatory protein systems, Ns and Ni, which regulate adenylate cyclase activity in plasma membranes. In:Molecular Mechanisms of Transmembrane Signalling, Molecular Aspects of Cellular Regulation, Vol. 4 (edited by COHEN, P. & HOUSLAY, M. D.), pp. 91–116, Amsterdam: Elsevier.

    Google Scholar 

  • NOVELLI, A., NICOLETTI, F., WROBLEWSKI, J. T., ALHO, H., COSTA, E. & GUIDOTTI, A. (1987) Excitatory amino acid receptors coupled with guanylate cyclase in primary cultures of cerebellar granule cells.J. Neurosci. 7, 40–7.

    Google Scholar 

  • PALKAMA, A., KAUFMAN, H., UUSITALO, R. & UUSITALO, H. (1986) Histochemistry of adenylate cyclase activity in the anterior segment of the eye: a methodological evaluation with biochemical background.Exp. Eye Res. 43, 1043–56.

    Google Scholar 

  • PALMER, W. K. & DOUKAS, S. (1984) Dibutyryl cyclic AMP increases phosphodiesterases activity in the rat heart.Can. J. Physiol. Pharmac. 62, 1225–30.

    Google Scholar 

  • PASCOLINI, R., SPRECA, A., LORVIK, S., FAGIOLI, O. & FANO, G. (1935) Ultracytochemical and biochemical evidence for guanylate cyclase in guinea pig testis.Anat. Rec. 212, 277–81.

    Google Scholar 

  • PICHARD, A. L. & CHEUNG, W. Y. (1976) Cyclic 3′,5′-neucleotide phosphodiesterase: interconvertible multiple forms and their effects on enzyme activity and kinetics.J. biol. Chem. 251, 5726–37.

    Google Scholar 

  • POEGGEL, G. & BERNSTEIN, H.-G. (1981) Towards a specific histochemical localization of adenylate cyclase in the rat hippocampus. I. Methodological aspects.Acta Histochem. 69, 171–5.

    Google Scholar 

  • POEGGEL, G., BERNSTEIN, H.-G., LUPPA, H. & BISCHOFF, D. (1981) Specific demonstration of rat brain adenylate cyclase in polyacryl amide microgels by a new histochemical procedure.Histochemistry 73, 305–9.

    Google Scholar 

  • POEGGEL, G., LUPPA, H. & WEISS, J. (1982) Multiple localization of adenylate cyclase in rat hippocampus: A histochemical study.Histochemistry 74, 139–47.

    Google Scholar 

  • POEGGEL, G. & LUPPA, H. (1984) Problems of light microscopical adenylate cyclase demonstration in rat cerebellum with adenylyl imidodiphosphate.Acta histochem. cytochem. 17, 601–9.

    Google Scholar 

  • POEGGEL, G., LUPPA, H., BERNSTEIN, H.-G. & WEISS, J. (1984) Histochemistry of adenylate cyclase.Int. Rev. Cytol. 89, 35–64.

    Google Scholar 

  • POEGGEL, G. & LUPPA, H. (1986) Attempts for light microscopical demonstration of guanylate cyclase activity in rat cerebellum.Acta histochem. 80, 115–24.

    Google Scholar 

  • POEGGEL, G., LUPPA, H. & LUDWIG, A. (1987a) Histochemistry of cyclic nucleotide phosphodiesterase in nervous tissue. I. Enzymehistochemical investigations.Acta Histochem. Cytochem. 20, 375–80.

    Google Scholar 

  • POEGGEL, G., LUPPA, H., LUDWIG, W. & BORNELEIT, P. (1988) Production of an antiserum directed to cyclic nucleotide phosphodiesterase and its test by immunocytochemical methods in rat cerebellum.Histochemistry,80, 513–18.

    Google Scholar 

  • POEGGEL, G., LUPPA, H. & LUDWIG, A. (1987c) Histochemistry of cyclic nucleotide phosphodiesterase in nervous tissue. II. Immunohistochemical investigations.Acta Histochem. Cytochem. 20, 381–6.

    Google Scholar 

  • QUAYL, E. S., PAGEL, J., MONTI, J. A. & CHRISTIAN, S. T. (1978) A serotonin-sensitive guanylate cyclase associated with specific neurotransmitter binding sites on isolated synaptic membranes from mature rat brainLife Sci. 23, 159–66.

    Google Scholar 

  • QUIK, M., EMSON, P. C. & JOYCE, E. (1979) Dissociation between the presynaptic dopamine-sensitive adenylate cyclase and [3H] spiperone binding sites in rat substantia nigra.Brain Res. 167, 355–65.

    Google Scholar 

  • RECHARDT, L. & HÄRKÖNEN, M. (1975) Electron microscopical demonstration of adenyl cyclase activities in the nervous tissue.Ultrastruct. Res. 50, 365.

    Google Scholar 

  • RECHARDT, L. & HERVONEN, H. (1976) Electron microscopic localization of adenylate cyclase activity of white and brown adipose tissue of the rat and chicken.Histochemistry 50, 57–64.

    Google Scholar 

  • RECHARDT, L. & HÄRKÖNEN, M. (1977) Electron microscopical demonstration of adenylate cyclase activity in nervous tissue.Histochemistry 51, 113–19.

    Google Scholar 

  • RECHARDT, L. HERVONEN, H. (1985) Cytochemical demonstration of adenylate cyclase activity with cerium.Histochemistry 82, 501–7.

    Google Scholar 

  • RECHARDT, L. & HERVONEN, H. (1986) Histochemical localization of adenylate cyclase in nervous tissue. InNeurohistochemistry, Modern Methods and Applications, Neurology and Neurobiology, Vol. 16 (edited by PANULA, P., PAIVARINTA, H. & SOINILA, S.), pp. 443–52. New York: Alan R. Liss Inc.

    Google Scholar 

  • REEVES, M. L., LEIGH, B. K. & ENGLAND, P. J. (1987) The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors.Biochem. J. 241, 535–41.

    Google Scholar 

  • REIK, L., PETZOLD, G. L., HIGGINS, J. A., GREENGARD, P. & BARRNETT, R. J. (1970) Hormone sensitive adenyl cyclase: cytochemical localization in rat liver.Science 168, 382–4.

    Google Scholar 

  • REVIS, N. W. & DURHAM, J. P. (1979) Adenylate cyclase activity in the parotid gland of the mouse after isoproterenol stimulation.J. Histochem. Cytochem. 27, 1317–21.

    Google Scholar 

  • RODBELL, M. (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction.Nature 284, 17–22.

    Google Scholar 

  • ROSTOMIAN, M. A., ABRAMIAN, K. S. & HAJOS, F. (1981) Electron microscopic demonstration of adenylate cyclase activity in rat cortical synaptosomes.Histochemistry 70, 167–72.

    Google Scholar 

  • ROSTOMIAN, M. A., ABRAMIAN, K. S., KALMAN, M. & HAJOS, F. (1983) Two pools of electron cytochemically demonstrable adenylate cyclase activity in cortical synaptosomes.Histochemistry 78, 531–8.

    Google Scholar 

  • SAEED, S. A., BUTT, N. M., EDWARDS, D. J. & TAYLOR, W. A. (1981) Inhibition of adenosine 3′,5′-cyclic monophosphate phosphodiesterase in lymphocytes by cortisol.Biochem. Soc. Transact. 9, 240–1.

    Google Scholar 

  • SAKAI, T., YAMANAKA, H., TANAKA, R., MAKINO, H. & KASAI, H. (1977) Stimulation of cyclic nucleotide phosphodiesterase from rat brain by activator protein, proteolytic enzymes and a vitamine E derivate.Biochim. biophys. acta 483, 121–34.

    Google Scholar 

  • SAKAI, T., MAKINO, H. & TANAKA, R. (1978) Increased activity of cyclic AMP phosphodiesterase from frozenthawed rat liver.Biochim biophys. acta 522, 477–90.

    Google Scholar 

  • SAITO, T. & KEINO, H. (1976) Ultrastructural demonstration of guanylate cyclase activity in rat kidney. In:Proceedings of the 5th International Congress of Histo- and Cytochemistry. p. 303. Bukarest.

  • SAITO, T., ARAKI, M. & AKAHOSHI, T. (1980) Lead citrate as a capture reagent for the demonstration of adenylate cyclase and guanylate cyclase activities. Abstract of the VIth International Histochemistry and Cytochemistry Congress. p. 335. Brighton, England.

  • SALTIEL, A. R. & STEIGERWALT, R. W. (1986) Purification of putative insulin-sensitive cAMP phosphodiesterase or its catalytic domain from rat adipocytes.Diabetes 35, 698–704.

    Google Scholar 

  • SANDERS, E. J. (1987) Ultrastructural cytochemical localization of adenylate cyclase in the early chick embryo.Cell Tiss. Res. 247, 465–8.

    Google Scholar 

  • SCHNELLER, S. W., IBAY, A. C., MARTINSON, E. A. & WELLS, J. N. (1986) Inhibition of cyclic nucleotide phosphodiesterase from pig coronary artery by benzoseparated analogues of 3-isobutyl-1-methylxanthine.J. med. Chem. 29, 972–7.

    Google Scholar 

  • SCHRAMM, M. SELINGER, Z. (1984) Message transmission in receptor controlled adenylate cyclase system.Science 225, 1350–6.

    Google Scholar 

  • SCHRÖDER, H. & NOACK, E. (1986) Neue Ergebnisse zur thiolabhängigen Aktivierung der Guanylatzyklase durch organische Nitrate.Z. Kardiol 75 (Suppl. 3) 20–4.

    Google Scholar 

  • SCHULZE, W., HINTERBERGER, U., WOLLENBERGER, A., KRAUSE, E.-G. & JANISZEWSKI, E. (1977) Problems of the cytochemical demonstration of adenylate cyclase.Acta Histochem. Cytochem. 10, 371–8.

    Google Scholar 

  • SCHULZE, W., WOLLENBERGER, A. & SLEZAK, J. (1986a) How informative is the cytochemical demonstration of adenylate cyclase.Acta Histochem. S33, 165–74.

    Google Scholar 

  • SCHULZE, W., WILLSHAHAB, L. & KUTTNER, I. (1986b) Cytochemical localization of adenylate cyclase activity in heart tissue with cerium.Acta Histochem. 80, 101–10.

    Google Scholar 

  • SEAMON, K. & DALY, J. W. (1981) Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein.J. biol. Chem. 256, 9799–801.

    Google Scholar 

  • SHANTA, T. R., WOODS, W. D., WAITZMAN, M. B. & BOURNE, G. H. (1966) Histochemical method for localization of cyclic 3′,5′-nucleotide phosphodiesterase.Histochemie 7, 177–90.

    Google Scholar 

  • SHARMA, R. K. & WANG, J. H. (1986) Regulation of cAMP concentration by calmodulin-dependent cyclic nucleotide phosphodiesterase.Biochem. cell. Biol. 64, 1072–80.

    Google Scholar 

  • SLEZAK, J. & GELLER, S. A. (1979) Cytochemical demonstration of adenylate cyclase in cardiac muscle. Effect of dimethyl sulfoxide.J. Histochem. Cytochem. 27, 774–81.

    Google Scholar 

  • SLEZAK, J. & GELLER, S. A. (1984) Cytochemical studies of myocardial adenylate cyclase after its activation and inhibition.J. Histochem. Cytochem. 32, 105–13.

    Google Scholar 

  • SMIGEL, M., KATADA, T., NORTHUP, J. K., BOKOCH, G. M., UI, M. & GILMAN, A. G. (1984) Mechanisms of guanine nucleotide-mediated regulation of adenylate cyclase activity.Adv. Cyclic nucl. Prot. Phosphoryl. Res. 17, 1–18.

    Google Scholar 

  • SPRUILL, W. A. & STEINER, A. L. (1979) Cyclic nucleotide and protein kinase immunocytochemistry.Adv. Cyclic nucl. Res. 10, 169–84.

    Google Scholar 

  • STECK, A. J. & APPEL, S. H. (1974) Phosphorylation of myelin basic proteinJ. biol. Chem. 249, 5416.

    Google Scholar 

  • STEINBERG, D. & HUTTUNEN, J. K. (1972) The role of cAMP in activation of hormone sensitive lipase of adipose tissue.Adv. Cyclic nucl. Res. 1, 47–62.

    Google Scholar 

  • STEINBUSCH, H. W. M., DE VENTE, J., WOUTERLOOD, F. G., BERKENBOSCH, F. & BOL, J. G. J. M. (1987) Immunohistochemical localization of monoamines and cyclic nucleotides. Their application in quantitative immunofluorescence studies and tracing monoaminergic neuronal connections.Acta Histochem. Suppl. in the press.

  • SUGIMURA, K. & MIZUTANI, A. (1978) Electron microscopic cytochemicl study of cyclic nucleotide phosphodiesterase in rat brain.Histochemistry 55, 97–106.

    Google Scholar 

  • SUGIMURA, K. & MIZUTANI, A. (1979) The inhibitory effect of xanthine derivatives on alkaline phosphatase in the rat brain.Histochemistry 61, 131–7.

    Google Scholar 

  • SUTHERLAND, E. W. & RALL, T. W. (1960) The relation of adenosine 3′,5′-phosphate and phosphorylase to the actions of catecholamines and other hormones.Pharmac. Rev. 12, 265–99.

    Google Scholar 

  • SWILLENS, S. & DUMONT, J. E. (1980) A unifying model of current concepts and data on adenylate cyclase activation by β-adrenergic agonists.Life Sci. 27, 1013–28.

    Google Scholar 

  • SZEGO, C. M. (1972) The role of cAMP in lysosome mobilization and their nucleotropic translocation in steroid hormonal target cells.Adv. Cyclic nucl. Res. 1, 541–64.

    Google Scholar 

  • SZUMANSKA, G., PALKAMA, A., LEHTOSALO, J. I. & UUSITALO, H. (1984) Adenylate cyclase in the microvessels of the rat brain: A histochemical study with light and electron microscopy.Acta Neuropath. 62, 219–24.

    Google Scholar 

  • TEO, T. S., LEE, M.-K. & THIYAGARAJAH, P. (1987) Activation of rat parotid low KM cyclic AMP phosphodiesterase by isoproterenol.Biochem. Int. 14, 327–36.

    Google Scholar 

  • THOMPSON, W. J. & APPLEMAN, M. M. (1971) Multiple cyclic nucleotide phosphodiesterase activities from rat brain.Biochemistry 10, 311–16.

    Google Scholar 

  • THOMPSON, W. J. STRADA, S. J. (1978) Hormonal regulation of cyclic nucleotide phosphodiesterases.Receptors Hormone Action 3, 553–77.

    Google Scholar 

  • TOLKOVSKY, A. M. & LEVITZKY, A. (1978) Model of coupling between the β-adrenergic receptor and adenylate cyclase in turkey erythrocytes.Biochemistry 17, 3795–810.

    Google Scholar 

  • TREMBLAY, J., LACHANCE, B. & HAMLET, P. (1985) Activation of cyclic GMP-binding and cyclic AMP-specific phosphodiesterases of rat platelets by a mechanism involving cyclic AMP-dependent phosphorylation.J. Cyclic nucl. Prot. Phosphor. Res. 10, 397–411.

    Google Scholar 

  • TSE, J. S. T., SHIBAYAMA, Y. & LIN, B. J. (1978) Electron-cytochemical and biochemical demonstration of guanylate cyclase activity in the pancreatic islet.Histochemistry 58, 297–305.

    Google Scholar 

  • UENO, S., BAMBAUER, H. J., UMAR, H. & UECK, M. (1984) A new histo- and cytochemical method for demonstration of cyclic 3′,5′-nucleotide phosphodiesterase activity in retinal rod photoreceptor cells of the rat.Histochemistry 81, 445–51.

    Google Scholar 

  • VAES, G. (1968) On the mechanisms of bone resorption. The action of parathyroid hormone on the excretion and synthesis of lysosomal enzymes and on the extracellular release of acid by bone cells.J. cell. Biol. 39, 676–97.

    Google Scholar 

  • VALLET-STROUVE, C., FERRE, F. & BREUILLER, M. (1984) Evolution of cAMP phosphodiesterase activity in cultured myometrial cells: effects of steroids and of successive subcultures.J. cell Physiol. 20, 391–6.

    Google Scholar 

  • VAUGHAN, M., DANELLO, M. A., MANGANIELLO, V. & STREWLER, G. J. (1980) Regulation of cyclic nucleotide phosphodiesterase activity.Adv. Cyclic nucl. Res. 14, 263–72.

    Google Scholar 

  • VESLEY, D. L. (1980) The interrelationship of somatostatin and guanylate cyclase activity.Molec. cell. Biochem. 32, 131–4.

    Google Scholar 

  • VORBRODT, A. W., SZUMANSKA, G. & DOBROGOWSKA, D. H. (1984) Cytochemical studies of adenylate cyclase in the choroid plexus and brain vessels of rat and mouse.J. Histochem. Cytochem. 32, 275–84.

    Google Scholar 

  • WAGNER, R. C., KREINER, P., BARRNETT, R. J. & BITENSKY, W. M. (1972) Biochemical and cytochemical localization of a catecholamine-sensitive adenylate cyclase in isolated capillary endothelium.Proc. natn. Acad. Sci. U.S.A. 69, 3175–9.

    Google Scholar 

  • WAMSLEY, J. K., WEST, J. R., BLACK, A. C. JR. & WILLIAMS, T. H. (1979) Muscarinic cholinergic and preganglionic physiological stimulation increase cyclic GMP-levels in guinea pig superior cervical ganglia.J. Neurochem. 32, 1033–5.

    Google Scholar 

  • WEDNER, H. J., HOFFER, B. J., BATTENBERG, E., STEINER, A. L., PARKER, C. W. & BLOOM, F. E. (1972) A method for detecting intracellular cyclic adenosine monophosphate by immunofluorescence.J. Histochem. Cytochem. 20, 293–5.

    Google Scholar 

  • WEDNER, J. H. & PARKER, C. W. (1977) Adenylate cyclase activity in lymphocyte subcellular fractions. Characterization of a nuclear adenylate cyclase.Biochem. J. 162, 483–91.

    Google Scholar 

  • WEISHAAR, R. E., CAIN, M. H. & BRISTOL, J. A. (1985) A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterase and the potential for drug selectivity.J. med. Chem. 28, 537–45.

    Google Scholar 

  • WEISS, B. & COSTA, E. (1968) Regional and subcellular distribution of adenyl cyclase and 3′,5′-cyclic nucleotide phosphodiesterase in brain and pineal gland.Biochem. Pharmac. 17, 2107–16.

    Google Scholar 

  • WILSON, P. D. & HORSTER, M. F. (1985) Histochemical localization of hormone sensitive adenylate cyclase in defined nephron epithelia in culture.Histochemistry 82, 539–45.

    Google Scholar 

  • YAMAMOTO, T. & OZAWA, H. (1977) Adenylate cyclase in paraneurons. A histochemical study.Arch. Histol. Jpn. 40, 49–60.

    Google Scholar 

  • YOUNT, R. G., BABCOCK, D., BALLANTYNE, W. & OHALA, D. (1971) Adenylyl imidodiphosphate an adenosine triphosphate analog containing a P-N-P linkage.Biochemistry 10, 2484–9.

    Google Scholar 

  • YOUNT, R. G. (1974) Adenylyl imidodiphosphate and guanylyl imidodiphosphate.Meth. Enzym. 38, 420–7.

    Google Scholar 

  • ZAJIC, G. & SCHACHT, J. (1983) Cytochemical demonstration of adenylate cyclase with strontium chloride in the rat pancreas.J. Histochem. Cytochem. 31, 25–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on a lecture given by G.P. at the invitation of the Royal Microscopical Society at a Symposium on ‘Histochemical Analysis of Cell Function’ in York 22–24 September 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poeggel, G., Luppa, H. Histochemistry of nucleotidyl cyclases and cyclic nucleotide phosphodiesterases. Histochem J 20, 249–268 (1988). https://doi.org/10.1007/BF01745604

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01745604

Keywords

Navigation