Skip to main content
Log in

Constraints on Cation Order in Calcium-rich Sedimentary Dolomite

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Most sedimentary Ca-rich dolomite in pre-Holocenerocks is known to exhibit a fine-scale modulation inTEM images, reflecting a domain structure of which onecomponent is a low-symmetry variant of dolomite. Thevarious structural models proposed for thelow-symmetry component involve Ca–Mg order patternsthat are different from that in dolomite. Caution istherefore required for interpretation of X-raydiffraction data, which average over the entirestructure. The average structures of two Ca-richdolomites having a structural modulation are refinedusing single-crystal intensity data. The resultsindicate a poor fit using a dolomite model, which isconsistent with the findings from TEM and electrondiffraction indicating that one component of thedomain structure is different than dolomite. Resultsalso indicate that average model A and B cation siteshave mixed Ca–Mg occupancy, which provides someconstraints on possible models for the low-symmetrydomains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barber, D. J., Reeder, R. J. and Smith, D. J. (1985) A TEM microstructural study of dolomite with curved faces (saddle dolomite). Contrib.Mineral.Petrol. 91, 82–92.

    Google Scholar 

  • Bish, D. L. and Reynolds, R. C. (1989) Sample preparation for X-ray diffraction. Reviews in Mineralogy 20, 73–100.

    Google Scholar 

  • Chai, L. and Navrotsky, A. (1996) Thermochemistry of carbonate-pyroxene equilibria. Contrib.Mineral.Petrol. 114, 139–147.

    Google Scholar 

  • Chai, L., Navrotsky, A. and Reeder, R. J. (1995) Energetics of calcium-rich dolomite. Geochim.Cosmochim.Acta 59, 939–944.

    Google Scholar 

  • Dollase, W. A. and Reeder, R. J. (1986) Crystal structure refinement of huntite, CaMg3(CO3)4, with X-ray powder data. Amer.Mineral. 71, 163–166.

    Google Scholar 

  • Finger, L. W. and Prince, E. (1974) A system of Fortran IV computer programs for crystal structure computations. U.S.Nat.Bur.Standards Tech.Note 854.

  • Füchtbauer, H. and Goldschmidt, H. (1965) Beziehungen zwischen Calciumgehalt und Bildungsbedingungen der Dolomite. Geol.Rundschau 55, 29–40.

    Google Scholar 

  • Gaines, A. M. (1980) Dolomitization kinetics: Recent experimental studies. SEPM Spec.Publ. 28, 81–86.

    Google Scholar 

  • Goldsmith, J. R. and Graf, D. L. (1958) Structural and compositional variations in some natural dolomites. J.Geol. 66, 678–693.

    Google Scholar 

  • Goldsmith, J. R. and Heard, H. C. (1961) Subsolidus relations in the system CaCO3-MgCO3. J.Geol. 69, 45–74.

    Google Scholar 

  • Graf, D. L. and Goldsmith, J. R. (1956) Some hydrothermal syntheses of dolomite and protodolomite. J.Geol. 64, 173–187.

    Google Scholar 

  • Graf, D. L., Blyth, C. R. and Stemmler, R. S. (1967) One-dimensional disorder in carbonates. Il.St.Geol.Survey Circ. 408, 1–60.

    Google Scholar 

  • Gregg, J. M., Howard, S. A. and Mazzullo, S. J. (1992) Early diagenetic recrystallization of Holocene (<3000 years old) peritidal dolomites, Ambergris Cay, Belize. Sedimentology 39, 143–160.

    Google Scholar 

  • Hawthorne, F. C. (1983) Quantitative characterization of site-occupancies in minerals. Amer.Mineral. 68, 287–306.

    Google Scholar 

  • Khan, M. R. and Barber, D. J. (1990) Composition-related microstructures in zinc-bearing carbonate assemblages from Broken Hill, New South Wales. Mineral.Petrol. 41, 229–245.

    Google Scholar 

  • Land, L. S. (1980) The isotopic and trace element geochemistry of dolomite: The state of the art. SEPM Spec.Publ. 28, 87–110.

    Google Scholar 

  • Lippmann, F. (1973) Sedimentary Carbonate Minerals. Springer-Verlag, Berlin, 228 pp.

    Google Scholar 

  • Lumsden, D. N. and Chimahusky, J. S. (1980) Relationship between dolomite nonstoichiometry and carbonate facies parameters. SEPM Spec.Publ. 28, 123–137.

    Google Scholar 

  • Mackenzie, F. T., Bischoff, W. D., Bishop, F. C., Loijens, M., Schoonmaker, J. and Wollast, R. (1983) Magnesian calcites: low-temperature occurrence, solubility,and solid solution behavior. Rev.in Mineralogy 11, 97–144.

    Google Scholar 

  • Mazzullo, S. J. (1992) Geochemical and neomorphic alteration of dolomite: A review. Carbonates and Evaporites 7, 21–37.

    Google Scholar 

  • Miser, D. E., Swinnea, J. S. and Steinfink, H. (1987) TEM observations and X-ray crystal-structure refinement of a twinned dolomite with a modulated structure. Amer.Mineral. 72, 188–193.

    Google Scholar 

  • Navrotsky, A. and Capobianco, C. (1987) Enthalpies of formation of dolomite and of magnesian calcite. Amer.Mineral. 79, 782–787.

    Google Scholar 

  • Navrotsky, A., Dooley, D., Reeder, R. J. and Brady, P. (1999) Calorimetric studies of the energetics of order-disorder in the system Mg1-xFexCa(CO3)2. Amer.Mineral. 84, 1622–1626.

    Google Scholar 

  • Randazzo, A. F. and Hickey, E. W. (1978) Dolomitization in the Floridan Aquifer. Amer.J.Sci. 278, 1177–1184.

    Google Scholar 

  • Reeder, R. J. (1981) Electron optical investigation of sedimentary dolomites. Contrib.Mineral.Petrol. 76, 148–157.

    Google Scholar 

  • Reeder, R. J. (1983) Crystal chemistry of the rhombohedral carbonates. Rev.in Mineralogy 11, 1–47.

    Google Scholar 

  • Reeder, R. J. (1992) Carbonates: Growth and alteration microstructures. Rev.in Mineralogy 27, 381–424.

    Google Scholar 

  • Reeder, R. J. and Markgraf, S. A. (1986) High-temperature crystal chemistry of dolomite. Amer.Mineral. 71, 795–804.

    Google Scholar 

  • Reeder, R. J. and Sheppard, C. E. (1984) Variation of lattice parameters in some sedimentary dolomites. Amer.Mineral. 69, 520–527.

    Google Scholar 

  • Reeder, R. J. and Wenk, H.-R. (1983) Structure refinements of some thermally disordered dolomites. Amer.Mineral. 68, 769–776.

    Google Scholar 

  • Reksten, K. (1990a) Superstructures in calcian ankerite. Phys.Chem.Minerals 17, 266–270.

    Google Scholar 

  • Reksten, K. (1990b) Superstructures in calcite. Amer.Mineral. 75, 807–812.

    Google Scholar 

  • Tsipursky, S. J. and Buseck, P. R. (1993) Structure of magnesian calcite from sea urchins. Amer.Mineral. 78, 775–781.

    Google Scholar 

  • Van Tendeloo, G., Wenk, H.-R. and Gronsky, R. (1985) Modulated structures in calcian dolomite: A study by electron microscopy. Phys.Chem.Minerals 12, 333–341.

    Google Scholar 

  • Wenk, H.-R. and Zhang, F. (1985) Coherent transformation in calcian dolomite. Geology 13, 457–460.

    Google Scholar 

  • Wenk, H.-R., Barber, D. J. and Reeder, R. J. (1983) Microstructures in carbonates. Rev.inMineralogy 11, 301–367.

    Google Scholar 

  • Wenk, H.-R., Meisheng, H., Lindsey, T. and Morris, J. W. (1991) Superstructures in ankerite and calcite. Phys.Chem.Minerals 17, 527–539.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeder, R.J. Constraints on Cation Order in Calcium-rich Sedimentary Dolomite. Aquatic Geochemistry 6, 213–226 (2000). https://doi.org/10.1023/A:1009659122772

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009659122772

Navigation