Skip to main content
Log in

Effects of microenvironment on the dynamics of spider-mite populations

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

The relationship between environmental variables (chiefly temperature and humidity) and the population dynamics of spider mites is reviewed. Both direct effects on the spider mites and indirect effects operating through effects on spider mite natural enemies (mainly phytoseiid mites) are discussed. Factors determining the environmental conditions actually experienced by spider mites (microenvironment) are presented.

Microenvironmental information versus environmental information from nearby weather stations is evaluated for utility in predicting spider mite population dynamics. A comprehensive plant canopy/spider mite/phytoseiid model is used to simulate an irrigated maize/spider-mite/phytoseiid system in a semi-arid climate. Under nearly all tested combinations of weather and irrigation, substantial differences were seen between simulations that considered microenvironment and those that considered only environmental conditions above the plant canopy. Future research needs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allawi, T.F., 1983. Biological studies ofNeoseiulus fallacis feeding onTetranychus urticae andOligonychus pratensis. Ph.D. Dissertation, Department of Zoology/Entomology, Colorado State University, Fort Collins, Colo., 108 pp.

    Google Scholar 

  • Badii, M.H. and McMurtry, J.A., 1984. Life history of and life table parameters forPhytoseiulus longipes with comparative studies onP. persimilis andTyphlodromus occidentalis (Acari: Phytoseiidae). Acarologia, 25: 111–123.

    Google Scholar 

  • Barcelo, J.A., 1981. Photoeffects of visible and ultraviolet radiation on the two-spotted spider mite.Tetranychus urticae. Photochem. Photobiol., 33: 703–706.

    Google Scholar 

  • Berry, J.S., Holtzer, T.O., Innis, G.S. and Logan, J.A., 1988. A simple order-of-preference technique for modeling the predator functional response in an acarine predator/prey system. Exp. Appl. Acarol., 5: (in press)

  • Boyne, J.V. and Hain, F.P., 1983. Responses ofNeoseiulus fallacis (Acarina: Phytoseiidae) to different prey densities ofOligonychus ununguis (Acarina: Tetranychidae), and to different relative humidity regimes. Can. Entomol., 115: 1607–1614.

    Google Scholar 

  • Congdon, B.D. and Logan, J.A., 1983. Temperature effects on development and fecundity ofOligonychus pratensis (Acari: Tetranychidae). Environ. Entomol., 12: 359–362.

    Google Scholar 

  • Crooker, A., 1985. Embryonic and juvenile development. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control. Vol. 1A. Elsevier, Amsterdam, pp. 149–163.

    Google Scholar 

  • Curry, G.L., Feldman, R.M. and Sharpe, P.J.H. 1978a. Foundations of stochastic development. J. Theor. Biol., 74: 397–410.

    PubMed  Google Scholar 

  • Curry, G.L., Feldman, R.M. and Smith, K.C., 1978b. A stochastic model of a temperature-dependent population. J. Theor. Popul. Biol., 13: 197–213.

    Google Scholar 

  • De Moraes, G.J. and McMurtry, J.A., 1981. Biology ofAmblyseius citrifolius (Denmark and Muma) (Acarina: Phytoseiidae). Hilgardia, 49: 1–29.

    Google Scholar 

  • Ferro, D.N. and Chapman, R.B., 1979. Effects of different constant humidities and temperatures on twospotted spider mite egg hatch. Environ. Entomol., 8: 701–705.

    Google Scholar 

  • Ferro, D.N. and Southwick, E.E., 1984. Microclimates of small arthropods: estimating humidity within the leaf boundary layer. Environ. Entomol., 13: 926–929.

    Google Scholar 

  • Ferro, D.N., Chapman, R.B. and Penman, D.R., 1979. Observations on insect microclimate and insect pest management. Environ. Entomol., 8: 1000–1003.

    Google Scholar 

  • Gardner, W.A., Oetting, R.D. and Storey, G.K., 1982. Susceptibility of the two-spotted spider mite,Tetranychus urticae Koch, to the fungal pathogenHirsutella thompsonii Fisher. Fla. Entomol., 65: 458–465.

    Google Scholar 

  • Gerson, U., Kenneth, R. and Muttath, T.I., 1979.Hirsutella thompsonii, a fungal pathogen of mites. II. Host-pathogen interactions. Ann. Appl. Biol., 91: 29–40.

    Google Scholar 

  • Hazan, A., Gerson, U. and Tahori, A.S., 1973. Life history and life tables of the carmine spider mite. Acarologia, 15: 414–440.

    Google Scholar 

  • Hazan, A., Gerson, U. and Tahori, A.S., 1974. Spider mite webbing. I. The production of webbing under various environmental conditions. Acarologia, 16: 68–84.

    Google Scholar 

  • Kennedy, G.G. and Smitley, D.R., 1985. Dispersal. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology. Natural Enemies and Control. Vol. 1A. Elsevier, Amsterdam, pp. 233–242.

    Google Scholar 

  • Logan, J.A., 1988. Toward an expert system for development of pest simulation models. Environ. Entomol. (in press).

  • Logan, J.A., Wollkind, D.J., Hoyt, S.C. and Tanigoshi, L.K., 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol., 5: 1133–1140.

    Google Scholar 

  • McMurtry, J.A. and Scriven, G.T., 1965. Life history studies ofAmblyseius limonicus, with comparative studies onAmblyseius hibisci (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am., 58: 106–111.

    Google Scholar 

  • McMurtry, J.A., Mahr, D.L. and Johnson, H.G., 1976. Geographic races in the predaceous mite,Amblyseius potentillae (Acari: Phytoseiidae). Int. J. Acarol., 2: 23–28.

    Google Scholar 

  • Monteith, J.L. and Butler, D.R., 1979. Dew and thermal lag: A model for cocoa pods. Q. J. R. Meteorol. Soc., 105: 207–215.

    Google Scholar 

  • Nobel, P.S., 1983. Biophysical Plant Physiology and Ecology. Freeman, San Francisco, 608 pp.

    Google Scholar 

  • Norman, J.M., 1979. Modeling the complete crop canopy. In: B. Barfield and J. Geiber (Editors), Modification of the Aerial Environment of Crops. American Society of Agricultural Engineers, St. Joseph, Mich.,Asae Monogr. No. 2, pp. 249–277.

    Google Scholar 

  • Norman, J.M., 1982. Simulation of microclimates. In: J.L. Hatfield and I.J. Thomason (Editors), Biometeorology in Integrated Pest Management. Academic Press, London, pp. 65–99.

    Google Scholar 

  • Norman, J.M. and Campbell, G.S., 1983. Application of a plant-environment model to problems in irrigation. In: D. Hill (Editor), Advances in Irrigation. Academic Press, London, pp. 155–188.

    Google Scholar 

  • Norman, J.M., Toole, J.L., Holtzer, T.O. and Perring, T.M., 1984. Energy budget for the Banks grass mite (Acari: Tetranychidae) and its use in deriving mite body temperatures. Environ. Entomol., 13: 344–347.

    Google Scholar 

  • Perring, T.M., Holtzer, T.O., Kalisch, J.A. and Norman, J.M., 1984a. Temperature and humidity effects on ovipositional rates, fecundity, and longevity of adult female Banks grass mites Acari: Tetranychidae). Ann. Entomol. Soc. Am., 77: 581–586.

    Google Scholar 

  • Perring, T.M., Holtzer, T.O., Toole, J.L., Norman, J.M. and Myers, G.L., 1984b. Influences of temperature and humidity on pre-adult development of the Banks grass mite, (Acari: Tetranychidae). Environ. Entomol., 13: 338–343.

    Google Scholar 

  • Putman, W.L., 1970. Effects of water and high humidity on the European red mite,Panonychus ulmi (Acarina: Tetranychidae). Can. Entomol., 102: 955–961.

    Google Scholar 

  • Rabbinge, R., 1976. Biological control of fruit-tree red spider mite.Pudoc (Centre for Agricultural Publishing and Documentation), Wageningen, 228 pp.

    Google Scholar 

  • Rosenberg, N.J., Blad, B.L. and Verma, S.B., 1983. Microclimate, The Biological Environment (2nd edition). Wiley Interscience, New York, 495 pp.

    Google Scholar 

  • Sabelis, M.W., 1981. Biological control of two-spotted spider mites using phytoseiid predators. Part I. Modelling the predator-prey interaction at the individual level.Pudoc (Centre for Agricultural Publishing and Documentation), Wageningen, 242 pp.

    Google Scholar 

  • Sabelis, M.W., 1985. Development. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control. Vol. 1B. Elsevier, Amsterdam, pp. 43–53.

    Google Scholar 

  • Shaffer, P.L., 1983. Prediction of variation in development period of insects and mites reared at constant temperatures. Environ. Entomol., 12: 1012–1019.

    Google Scholar 

  • Sharpe, P.J.H., Curry, G.L., DeMichele, D.W. and Cole, C.L., 1977. Distribution model of organism development times. J. Theor. Biol., 66: 21–38.

    PubMed  Google Scholar 

  • Sharpe, P.J.H., Schoolfield, R.M. and Butler, G.D., Jr., 1981. Distribution model ofHeliothis zea (Lepidoptera: Noctuidae) development times. Can. Entomol., 113: 845–856.

    Google Scholar 

  • Smitley, D.R., Brooks, W.M. and Kennedy, G.G., 1986a. Environmental effects on production of primary and secondary conidia, infection, and pathogenesis ofNeozygites floridana, a pathogen of the two-spotted spider mite,Tetranychus urticae. J. Invertebr. Pathol., 47: 325–332.

    Google Scholar 

  • Smitley, D.R., Kennedy, G.G. and Brooks, W.M., 1986b. Role of the entomogenous fungus,Neozygites floridana, in population declines of the two-spotted spider mite,Tetranychus urticae, on field corn. Entomol. Exp. Appl., 41: 255–264.

    Google Scholar 

  • Southwood, T.R.E., 1978. Ecological Methods. Chapman and Hall, London, 524 pp.

    Google Scholar 

  • Stenseth, C., 1979. Effect of temperature and humidity on the development ofPhytoseiulus persimilis and its ability to regulate populations ofTetranychus urticae (Acarina: Phytoseiidae, Tetranychidae). Entomophaga, 24: 311–317.

    Google Scholar 

  • Tanigoshi, L.K., Hoyt, S.C., Browne, R.W. and Logan, J.A., 1975a. Influence of temperature on population increase ofTetranychus mcdanieli (Acarina: Tetranychidae). Ann. Entomol. Soc. Am., 68: 972–978.

    Google Scholar 

  • Tanigoshi, L.K., Hoyt, S.C., Browne, R.W. and Logan, J.A., 1975b. Influence of temperature on population increase ofMetaseiulus occidentalis (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am., 68: 979–986.

    Google Scholar 

  • Tanigoshi, L.K., Fargerlund, J. and Nishio-Wong, J.Y., 1981. Significance of temperature and food resources to the developmental biology ofAmblyseius hibisci (Chant) (Acarina: Phytoseiidae). Z. Angew. Entomol., 92: 409–419.

    Google Scholar 

  • Toole, J.L., Norman, J.M., Holtzer, T.O. and Perring, T.M., 1984. Simulating Banks grass mite (Acari: Tetranychidae) population dynamics as a subsystem of a crop canopy-microenvironment model. Environ. Entomol., 13: 329–337.

    Google Scholar 

  • Tulisalo, U., 1974. Control of the two-spotted spider mite (Tetranychus urticae Koch) by high air humidity or direct contact with water. Ann. Entomol. Fenn., 40: 158–162.

    Google Scholar 

  • Van der Geest, L.P.S., 1985. Pathogens of spider mites. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control, Vol. 1B. Elsevier, Amsterdam, pp. 247–258.

    Google Scholar 

  • Van Dinh, N., Sabelis, M.W. and A. Janssen, 1988. Influence of humidity and water availability on the survival ofAmblyseius idaeus andAmblyseius anonymus (Acarina: Phytoseiidae). Exp. Appl. Acarol., 4: 27–40.

    Google Scholar 

  • Wagner, T.L., Wu, H., Sharpe, P.J.H. and Coulson, R.N., 1984a. Modeling distributions of insect development times: A literature review and application of the Weibull function. Ann. Entomol. Soc. Am., 77: 475–487.

    Google Scholar 

  • Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M. and Coulson, R.N., 1984b. Modeling insect development rates: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am., 77: 208–225.

    Google Scholar 

  • Wrensch, D.L., 1985. Reproductive Parameters. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control, Vol. 1A. Elsevier, Amsterdam, pp. 165–170.

    Google Scholar 

  • Yaninek, J.S. and Animashaun, A., 1987. Why cassava green mites are dry-season pests. In: D. Rijks and J. Mathys (Editors), Proc. Seminar on Agrometeorology and Crop Protection in the Lowland Humid and Subhumid Tropics, Cotonou, Benin, 7–11 July 1986. World Meteorological Organization, Geneva, pp. 59–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtzer, T.O., Norman, J.M., Perring, T.M. et al. Effects of microenvironment on the dynamics of spider-mite populations. Exp Appl Acarol 4, 247–264 (1988). https://doi.org/10.1007/BF01196189

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01196189

Keywords

Navigation