Skip to main content
Log in

Non-dairy lactic fermentations: the cereal world*

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Sourdough is the foremost cereal fermentation performed in a variety of technologies with almost any cereal. The lactobacilli studied most intensely include Lactobacillus sanfranciscensis, L. reuteri and L. pontis isolated from traditional and modern rye and wheat fermentations. Molecular biology tools are available for their rapid identification and monitoring throughout a process. The currently available insight on their metabolism can be used to explain their prevalence in this environment and their interactions. Key genes of the sugar degradation pathway were cloned and characterised from L. sanfranciscensis. In addition some strains were found to have special properties including the production of antagonistic compounds or the adhesion to human intestinal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Betzl D, Ludwig W & Schleifer KH (1990) Identification of lactococci and enterococci by colony hybridization with 23S rRNA-targeted oligonucleotides, Appl. Environ. Microbiol., 56: 2927-2929

    Google Scholar 

  • Bohak I, Back W, Richter L, Ehrmann M, Ludwig W & Schleifer KH (1998) Lactobacillus amylolyticus sp. nov. isolated from beer malt and beer wort. System. Appl. Microbiol. 21: 360-364

    Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD & Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148: 107-127

    Google Scholar 

  • Corsetti A, Gobbetti M & Smacchi E (1996) Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance from Lactobacillus sanfrancisco C57. Food Microbiol. 13: 447-456

    Google Scholar 

  • Corsetti A, Gobbetti M, Rossi J & Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl. Microbiol. Biotechnol. 50: 253-256

    Google Scholar 

  • Ehrmann A & Vogel RF (1998) Maltose metabolism of Lactobacillus sanfranciscensis: cloning and heterologous expession of the key enzymes, maltose phosphorylase and phosphoglucomutase. FEMS Microbiol. Lett 169: 81-86

    Google Scholar 

  • Gänzle MG, Ehmann M & Hammes WP (1998) Modelling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of the sourdough fermentation. Appl. Environ. Microbiol. 64: 2616-2623

    Google Scholar 

  • Gänzle M (1998) Useful properties of lactobacilli for application as protective cultures in food. PhD thesis, Universität Hohenheim, Germany

    Google Scholar 

  • Gobbetti M (1998) Interactions of lactic acid bacteria and yeasta in sourdoughs. Trends Food Sci. Technol. 9: 267-274

    Google Scholar 

  • Gobetti M, Corsetti A & Rossi J (1996) Lactobacillus sanfrancisco, a key sourdough lactic acid bacterium: Physiology, genetic and biotechnology. Adv. Food Sci. 18: 167-175

    Google Scholar 

  • Gobetti M, Corsetti A, Morelli L & Elli M (1995) Expression of α-amylase gene from Bacillus stearothermophilus in Lactobacillus sanfrancisco. Biotechnol. Lett. 18: 969-974

    Google Scholar 

  • Hamad SH, Dieng MC, Ehrmann MA & Vogel RF (1997) Characterization of the bacteial flora of Sudanese sorghum flour and sorghum sourdough. J. Appl. Microbiol. 83: 764-770

    Google Scholar 

  • Hammes WP, Stolz P & Gänzle M (1996) Metabolism of lactobacilli in traditional sourdoughs. Adv. Food Sci. 18: 176-184

    Google Scholar 

  • Hammes WP & Vogel RF (1997) Mikrobiologie von Sauerteig. in: Müller G, Holzapfel W & Weber H (Eds) Mikrobiologie der Lebensmittel: Lebensmittel pfanzlicher Herkunft. Behr's Verlag, Hamburg

    Google Scholar 

  • Hancioglu Ö & Karapinar M (1997) Microflora of Boza, a traditional fermented Turkish beverage. Int. J. Food Microbiol. 35: 271-274

    Google Scholar 

  • Hertel C, Ludwig W, Pot B, Kersters K & Schleifer KH (1993) Differentiation of lactobacilli occurring in fermented milk products by using oligonucleotide probes and electrophoretic protein profiles, System. Appl. Microbiol. 16: 453-467

    Google Scholar 

  • Mäntynen VH, Korhola M, Gudmundsson H, Turkainen H, Alfredsson GA, Salovaara H & Lindström K (1999) A polyphasic study on the taxonomic position of industrial sour dough yeasts. System. Appl. Microbiol. 22: 87-96

    Google Scholar 

  • Martinez-Anaya MA, Llin Z, Macias MP & Collar C (1994) Regulation of acetic acid production by homo-and heterofermentative lactobacilli in whole wheat sour-doughs. Z. Lebensm. Unters. Forsch. 199: 186-190

    Google Scholar 

  • Mora D, Fortina MG, Parini P & Manachini PL (1997) Identification of Pediococcus acidilactici and Pediococcus pentosaceus based on 16S rRNA and ldhD gene-targeted multiplex PCR analysis. FEMS Microbiol. Lett. 231-236

  • Müller MRA, Rouvet M, Brassart D, Böcker G, Ehrmann MA & Vogel RF (1998) Adhesion of Lactobacillus strains from cereal fermentations to human intestinal cells. Int. Dairy J. 8: 584

    Google Scholar 

  • Neubauer H, Glaasker E, Hammes WP, Poolmann B & Konings W (1994) Mechanisms of maltose uptake and glucose excretion on Lactobacillus sanfrancisco. J. Bacteriol. 176: 3007-3012

    Google Scholar 

  • Olsen A, Halm M & Jakobsen K (1995) The antimicrobial activity of lactic acid bacteria from fermented maize (kenkey) and their interactions during fermentation. J. Appl. Bacteriol. 79: 506-512

    Google Scholar 

  • Pot B, Hertel C, Ludwig W, Descgeemaeker P, Kersters K & Schleifer KH (1993) Identification and classification of Lactobacillus acidophilus, L. gasseri and Lactobacillus johnsonii strains by SDS-PAGE and rRNA-targeted oligonucleotide probe hybridization, J. Gen. Microbiol. 139: 513-517

    Google Scholar 

  • Röcken W, Rick M & Reinkemeier MZ (1992) Controlled production of acetic acid in wheat sour doughs. Lebensm. Unters. Forsch. 195: 259-263

    Google Scholar 

  • Röcken W & Voysey PA (1995) Sour-dough fermentation in bread making. J. Appl. Bacteriol. 79: 38S-48S

    Google Scholar 

  • Romero DA & Klaenhammer TR (1993) Transposable elements in lactococci: A review. J. Dairy Sci. 76: 1-19

    Google Scholar 

  • Saunders RM, Ng H & Kline L (1972) The sugars of flour and their involvement in the San Francisco sour dough French bread process. II. Isolation and characterization of undescribed bacteria responsible for the souring activity. Appl. Microbiol. 21: 459-465

    Google Scholar 

  • Schwartz E, Kroeger M & Rak B (1988) Distribution, nucleotide sequence and phylogenetic relationships of a new Escherichia coli insertion element. Nucleic Acid Res. 16: 6789-6802

    Google Scholar 

  • Stolz P, Böcker G, Hammes WP & Vogel RF (1995a) Utilization of electron acceptors by lactobacilli isolated from sourdough. I. Lactobacillus sanfrancisco. Z. Lebensm. Unters. Forsch. 201: 91-96

    Google Scholar 

  • Stolz P, Böcker G, Vogel RF & Hammes WP (1993) Utilisation of maltose and glucose by lactobacilli isolated from sourdough. FEMS Microbiol. Lett. 109: 237-242

    Google Scholar 

  • Stolz P, Hammes WP & Vogel RF (1996) Maltose-phosphorylase and hexokinase activity in lactobacilli from traditionally prepared sourdoughs. Adv. Food Sci. 18: 1-6

    Google Scholar 

  • Stolz P, Vogel RF & Hammes WP (1995b) Utilization of electron acceptors by lactobacilli isolated from sourdough. II. Lactobacillus pontis, L. reuteri, L. amylovorus and L. fermentum. Z. Lebensm. Unters. Forsch. 201: 402-410

    Google Scholar 

  • Ulrich A & Müller T (1998) Heterogeneity of plant-associated streptococci as characterized by phenotypic features and restriction analysis of PCR-amplified 16S rDNA, In: J. Appl. Microbiol. 84: 293-303

    Google Scholar 

  • Vogel RF & Ehrmann M (1996) Genetics of lactobacilli in food fermentations. In: El-Gewely MR (Ed) Biotechnology Annual Review II pp. 123-150

  • Vogel RF, Böcker G, Stolz P, Ehrmann M, Fanta D, Ludwig W, Pot B, Kersters K, Schleifer KH & Hammes WP (1994) Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int. J. System. Bacteriol. 44: 223-229

    Google Scholar 

  • Vogel RF, Müller M, Stolz P & Ehrmann M (1996) Ecology in sourdoughs produced by traditional and modern technologies. Adv. Food. Sci. 18: 152-159

    Google Scholar 

  • Weidner S, Arnold W & Pühler A (1996) Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes, in: Appl. Environ. Microbiol. 62: 766-771

    Google Scholar 

  • Wiese B, Strohmar W, Rainey FA & Diekmann H (1996) Lactobacillus panis sp. nov., from sourdough with a long fermentation period. Int. J. System. Bacteriol. 46: 449-453

    Google Scholar 

  • Yarrow D (1978) Candida milleri sp. nov. Int. J. System. Bacteriol. 28: 608-610

    Google Scholar 

  • Zapparoli G, Torriani S & Dellaglio F (1998) Differentiation of Lactobacillus sanfranciscensis strains by randomly amplified polymorphic DNA and pulsed field gel electrophoresis. FEMS Microbiol. Lett. 166: 325-332

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, R.F., Knorr, R., Müller, M.R. et al. Non-dairy lactic fermentations: the cereal world*. Antonie Van Leeuwenhoek 76, 403–411 (1999). https://doi.org/10.1023/A:1002089515177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002089515177

Navigation