Skip to main content
Log in

Pyrimidine base and ribonucleoside utilization by thePseudomonas alcaligenes group

  • Article
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Pyrimidine base and ribonucleoside utilization was investigated in the two type strains of thePseudomonas alcaligenes group. As sole sources of nitrogen, the pyrimidine bases uracil, thymine and cytosine as well as the dihydropyrimidine bases dihydrouracil and dihydrothymine supported the growth ofPseudomonas pseudoalcaligenes ATCC 17440 but neither these bases nor pyrimidine nucleosides supportedPseudomonas alcaligenes ATCC 14909 growth. Ribose, deoxyribose, pyrimidine and dihydropyrimidine bases as well as pyrimidine nucleosides failed to be utilized by eitherP. pseudoalcaligenes orP. alcaligenes as sole carbon sources. The activities of the pyrimidine salvage enzymes nucleoside hydrolase, cytosine deaminase, dihydropyrimidine dehydrogenase and dihydropyrimidinase were detected in cell-free extracts ofP. pseudoalcaligenes andP. alcaligenes. InP. pseudoalcaligenes, the levels of cytosine deaminase, dihydropyrimidine dehydrogenase and dihydropyrimidinase could be affected by the nitrogen source present in the culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen L, Kilstrup M & Neuhard J (1989) Pyrimidine, purine and nitrogen control of cytosine deaminase synthesis inEscherichia coli K12. Involvement of theglnLG andpurR genes in the regulation ofcodA expression. Arch. Microbiol. 152: 115–118

    Google Scholar 

  • Ban J, Vitale L & Kos E (1972) Thymine and uracil catabolism inEscherichia coli. J. Gen. Microbiol. 73: 267–272

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye-binding. Anal. Biochem. 72: 248–254

    Google Scholar 

  • Chu C-P & West TP (1990) Pyrimidine ribonucleoside catabolism inPseudomonas fluorescens biotype A. Antonie van Leeuwenhoek 57: 253–257

    Google Scholar 

  • Fink K, Cline RE & Fink RM (1963) Paper chromatography of several classes of compounds: correlated Rf values in a variety of solvent systems. Anal. Chem. 35: 389–398

    Google Scholar 

  • Hunninghake D & Grisolia S (1965) Uracil and thymine reductases. Methods Enzymol. 12A: 50–59

    Google Scholar 

  • Kelln RA & Warren RAJ (1974) Pyrimidine metabolism inPseudomonas acidovorans. Can. J. Microbiol. 20: 427–433

    Google Scholar 

  • Kim JM, Shimizu S & Yamada H (1987) Cytosine deaminase that hydrolyzes creatinine to N-methylhydantoin in various cytosine deaminase-forming microorganisms. Arch. Microbiol. 147: 58–63

    Google Scholar 

  • Kramer J & Kaltwasser H (1969) Verwertung von pyrimidinderivaten durchHydrogenomonas facilis. II. Abbau von thymin und uracil durch wildstamm und mutanten. Arch. Mikrobiol. 69: 138–148

    Google Scholar 

  • Morin A, Hummel W & Kula M-R (1986) Production of hydantoinase fromPseudomonas fluorescens strain DSM 84. Appl. Microbiol. Biotechnol. 25: 91–96

    Google Scholar 

  • O'Donovan GA & Neuhard J (1970) Pyrimidine metabolism in microorganisms. Bacteriol. Rev. 34: 278–343

    Google Scholar 

  • Ralston-Barrett E, Palleroni NJ & Doudoroff M (1976) Phenotypic characterization and deoxyribonucleic acid homologies of the ‘Pseudomonas alcaligenes’ group. Int. J. Syst. Bacteriol. 26: 421–426

    Google Scholar 

  • Sakai T, Watanabe T & Chibata I (1968) Metabolism of pyrimidine nucleotides in bacteria. J. Ferment. Technol. 46: 202–213

    Google Scholar 

  • Sakai T, Yu T & Omata S (1976) Distribution of enzymes related to cytidine degradation in bacteria. Agric. Biol. Chem. 40: 1893–1895

    Google Scholar 

  • Stanier RY, Palleroni NJ & Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43: 159–271

    Google Scholar 

  • Vogels GD & van derDrift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40: 403–468

    Google Scholar 

  • West TP & O'Donovan GA (1982) Repression of cytosine deaminase by pyrimidines inSalmonella typhimurium. J. Bacteriol. 149: 1171–1174

    Google Scholar 

  • West TP, Shanley MS & O'Donovan GA (1982) Improved colorimetric procedure for quantitating N-carbamoyl-β-alanine with minimum dihydrouracil interference. Anal. Biochem. 122: 345–347

    Google Scholar 

  • West TP, Traut TW, Shanley MS & O'Donovan GA (1985) ASalmonella typhimurium strain defective in uracil catabolism and β-alanine synthesis. J. Gen. Microbiol. 131: 1083–1090

    Google Scholar 

  • West TP (1989) Isolation and characterization of thymidylate synthetase mutants ofXanthomonas maltophilia. Arch. Microbiol. 151: 220–222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, T.P. Pyrimidine base and ribonucleoside utilization by thePseudomonas alcaligenes group. Antonie van Leeuwenhoek 59, 263–268 (1991). https://doi.org/10.1007/BF00583679

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00583679

Key words

Navigation