Skip to main content
Log in

Generalization of the moment schema of finite elements for investigating structures of slightly compressible elastomers

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. L. Treloir, The Physics of the Elasticity of Caoutchouc [Russian translation], IL, Moscow (1953).

    Google Scholar 

  2. É. É. Lavendel, Stress Analysis of Technical Rubber Products [in Russian], Mashinostroenie, Moscow (1976).

    Google Scholar 

  3. N. S. Gusyatinskaya, The Use of Finely Laminated Rubber-Metal Elements (FRME) in Machine Tools and Other Machines [in Russian], Mashinostronie, Moscow (1975).

    Google Scholar 

  4. S. C. Sharda and N. W. Tschoegl, “Strain energy density function for compressible rubberlike materials,” Trans. Soc. Rheology,20, No. 3, 361–372 (1976).

    Google Scholar 

  5. R. W. Penn, “Volume changes accompanying the extension of rubber,” Trans. Soc. Rheology,14, No. 4, 509–517 (1970).

    Google Scholar 

  6. K. F. Chernykh and I. M. Shubina, “Allowance for the compressibility of rubber,” Mekh. Elastomerov,2, 56–62 (1978).

    Google Scholar 

  7. L. R. Gerrmann, “The variational principle for equations of elasticity of incompressible and nearly incompressible materials,” Raket. Tekh. Kosmon., No. 3, 139–144 (1965).

    Google Scholar 

  8. L. R. Herrmann, “Elasticity equations for incompressible and nearly incompressible materials by a variational theorem,” AIAA J.,3, No. 10, 1896–1900 (1965).

    Google Scholar 

  9. S. W. Key, “A variational principle for an incompressible and nearly incompressible anisotropic elasticity,” Int. J. Solids Struct.,5, 455–461 (1965).

    Google Scholar 

  10. T. Pian and S. Li, “The finite element method for nearly incomressible materials,” Raket. Tekh. Kosmon., No. 6, 147–149 (1976).

    Google Scholar 

  11. T. H. H. Pian, “Derivation of element stiffness matrices by assumed stress distributions,” AIAA J.,2, 1333–1336 (1964).

    Google Scholar 

  12. S. W. Lee, An Assumed Stress Hybrid Finite Element for Three Dimensional Elastic Structural Analysis, M.I.T. ASRL TR 170-3, also AFOSR TR 75-0087. May (1974).

  13. D. S. Malkus, “A finite-element displacement model valid for any value of the compressibility,” Int. J. Solids Struct.,12, 731–738 (1976).

    Google Scholar 

  14. J. C. Nagetegaal, D. M. Parks, and J. R. Rice, “On numerically accurate finite element solutions in the fully plastic range,” Comt. Meth. Appl. Mech. Eng.,4, 153–177 (1974).

    Google Scholar 

  15. J. T. Oden and J. E. Key, “On some generalization of the incremental stiffness relations for finite deformations of compressible and incompressible finite elements,” Nucl. Eng. Design.,15, 121–134 (1971).

    Google Scholar 

  16. P. Tong, “An assumed stress hybrid finite element method for an incompressible and near-incompressible material,” Int. J. Solids Struct.,5, 455–461 (1969).

    Google Scholar 

  17. S. Cescotto and G. Fonder, “A finite element approach for large strain of nearly incompressible rubberlike materials,” Int. J. Solids Struct.,15, No. 8, 589–605 (1979).

    Google Scholar 

  18. V. P. Boldychev, “Improving the effectiveness of the finite element method in the solution of degenerating problems,” Vopr. Dinamiki Prochn., No. 42, 38–48 (1983).

    Google Scholar 

  19. G. M. Golemshtok, “Realization of the finite element method for the stress analysis of structures of incomprssible and nearly incompressible materials,” Prikl. Probl. Prochn. Plastichn., No. 23, 47–56 (1983).

    Google Scholar 

  20. G. B. Kuznetsov and A. A. Rogovoi, “One approach to the stress analysis of elastic structures of incompressible and slightly compressible materials with finite deformations,” in: The State of Stress and the Strength of Structures, Ural'skii Nauchnyi Tsentr, Sverdlovsk (1982), pp. 53–60.

    Google Scholar 

  21. A. S. Durdyev and V. I. Gafinov, “The variational principle of the theory of elasticity for incompressible and nearly incompressible materials,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 8, 13–18 (1980).

    Google Scholar 

  22. M. Tuomala, D. R. J. Owen, and O. C. Zienkiewicz, “A penalty function finite element method in nonlinear elasticity,” in: Numer. Meth. Coupl. Probl.: Proc. Int. Conf. Swansea, 7–11 Sept. 1981, pp. 466–477.

  23. O. C. Zienkiewicz, J. Too, and R. L. Taylor, “Reduced integration technique in general analysis of plates and shells,” Int. J. Numer. Meth. Eng.,3, No. 2, 275–290 (1971).

    Google Scholar 

  24. D. J. Naylor, “Stresses in nearly incompressible materials by finite elements with application to the calculation of excess pore pressure,” Int. J. Numer. Meth. Eng.,8, 443–460 (1974).

    Google Scholar 

  25. J. T. Oden and N. Kikuchi, “Finite-element methods for constrained problems in elasticity,” Int. J. Numer. Meth. Eng.,18, No. 5, 701–725 (1982).

    Google Scholar 

  26. I. Fried, “Numerical integration in the finite element method,” Comput. Struct., No. 4, 921–932 (1974).

    Google Scholar 

  27. T. J. R. Hughes, “Equivalence of finite elements for nearly incompressible elasticity,” J. Appl. Mech.,44, 181–183 (1977).

    Google Scholar 

  28. A. E. Beikin and V. L. Biderman, “The effect of slight compressibility of rubber on the operation of a low cylindrical rubber-metal shock absorber,” Raschety Prochn., No. 16, 5–24 (1975).

    Google Scholar 

  29. V. F. Gontsa, “The effect of slight compressibility on the solution of problems of the theory of elasticity on incompressible materials,” Voprosy Dinamiki i Prochn., No. 20, 181–193 (1970).

    Google Scholar 

  30. S. I. Dymnikov, I. R. Meiers, and A. G. Erdmanis, “Elastic potentials for slightly compressible elastomer materials,” Voprosy Dinamiki Prochn., No. 40, 98–108 (1982).

    Google Scholar 

  31. É. É. Lavendel, “Evaluation of the effect of compressibility in the calculation of the rigidity of technical rubber products,” Voprosy Dinamiki i Prochn., No. 27, 109–112 (1973).

    Google Scholar 

  32. D. S. Malkus, “Finite elements with penalties in nonlinear elasticity,” Int. J. Numer. Meth. Eng.,16, Special Issue, 121–136 (1980).

    Google Scholar 

  33. P. Tallec, “Contact between largely deformed incompressible superelastic solids and rigid bodies,” in: Numer. Meth. Coupl. Probl.: Proc. Int. Conf. Swasea, 7–11 Sept. 1981, pp. 478–489.

  34. A. S. Sakharov, “Moment schema of finite elements (MSFE) with a fiew to rigid displacements,” Soprotivlenie Materialov i Teoriya Sooruchenii, No. 24, 147–156 (1974).

    Google Scholar 

  35. A. S. Sakharov, V. N. Kislookii, V. V. Kirichevskii, et al., The Finite Element Method in Solid Mechanics [in Russian], Vyshcha Shkola, Kiev (1982).

    Google Scholar 

  36. N. A. Kil'chevskii, Fundamentals of the Analytical Mechanics of Shells [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1963).

    Google Scholar 

  37. V. V. Kirichevskii, “The system KODETOM for investigating highly elastic massive structures on the basis of the finite-element method,” in: Complex Computerized Stress Analysis of Buildings and Structures [in Russian], Kievskii Inzhenerno-Stroitel'skii Institut, Kiev (1978), pp. 142–148.

    Google Scholar 

Download references

Authors

Additional information

Voroshilograd Agricultural Institute. Translated from Problemy Prochnosti, No. 11, pp. 105–110, November, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirichevskii, V.V. Generalization of the moment schema of finite elements for investigating structures of slightly compressible elastomers. Strength Mater 18, 1553–1559 (1986). https://doi.org/10.1007/BF01524272

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01524272

Keywords

Navigation