Skip to main content
Log in

Fractography of static and fatigue fracture in molybdenum and its alloys

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literature Cited

  1. V. S. Ivanova, L. I. Maslov, and L. R. Botvina, “Fractographic peculiarities and fracture toughness of steel under cyclic loading,” Probl. Prochn., No. 2, 37–41 (1972).

    Google Scholar 

  2. V. S. Ivanova and V. F. Terent'ev, The Nature of Metal Fatigue [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  3. V. T. Troshchenko and V. V. Pokrovskii, “Patterns of fatigue and brittle fracture in steel 15G2 AF Dps at low temperatures,” Probl. Prochn., No. 3, 11–17 (1973).

    Google Scholar 

  4. V. A. Stepanenko and A. Ya. Krasovskii, “Microstructural features of fatigue fracture in low-carbon steel,” Probl. Prochn., No. 7, 52–54 (1974).

    Google Scholar 

  5. S. Kotsan'da, Fatigue Fracture in Metals [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  6. N. N. Morgunova, B. A. Klypin, V. A. Boyarshinov, et al., Alloys of Molybdenum [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  7. P. J. E. Forsyth, “Fatigue damage and crack growth in aluminum alloys,” Acta Met.,11, No. 7, 703–715 (1963).

    Google Scholar 

  8. V. M. Goritskii, V. F. Terent'ev, L. G. Orlov, et al., “Development of fatigue cracks in Armco iron at low temperatures,” Probl. Prochn., No. 6, 54–57 (1975).

    Google Scholar 

  9. V. F. Terent'ev, I. S. Kogan, and L. G. Orlov, “Features of fatigue fracture in polycrystalline molybdenum,” Fiz. Mater. Metalloved.,41, No. 3, 601–607 (1976).

    Google Scholar 

  10. P. Beardmore and P. H. Thornton, “Fatigue fracture in polycrystalline molybdenum,” Acta Met.,8, No. 1, 109–115 (1970).

    Google Scholar 

  11. V. V. Rybin, Yu. I. Poliéktov, and V. A. Likhachev, “Study of conditions for interchange of ductile fracture micromechanisms,” Fiz. Mater. Metalloved.,40, No. 1, 174–179 (1975).

    Google Scholar 

  12. M. Nageswararao, V. Gerold, and G. Kralik, “Factors leading to grain-boundary fatigue crack propagation in Al−Zn−Mg alloys,” J. Mat. Sci.,10, 515–524 (1975).

    Google Scholar 

  13. M.-W. Lui and I. Le May, “Effects of grain boundary carbides on the fatigue fracture of an AISI 4140 steel,” Proceedings of the Fourth Boston Loading Conference, 397–402 (1974).

  14. D. I. Golland and P. L. James, “Fatigue crack initiation and propagation in iron and iron-silicon alloys,” Met. Sci. J.,4, 113–118 (1970).

    Google Scholar 

  15. S. Kitagawa and T. Nakatao, “Initiation of intergranular fatigue cracks in annealed pure aluminum,” J. Mater. Sci.,23, No. 251, 626–631 (1974).

    Google Scholar 

  16. W. Epprecht, “Die Pissbildung in cristallinen Werkstoffen,” Schweiderische Bauzeitung,91, No. 48, 1175–1180 (1973).

    Google Scholar 

  17. E. Hornbogen and K.-H. Zum Gahr, “Microstructure and fatigue crack growth in a γ−Fe−Ni−Al alloy,” Acta Met.,24, No. 6, 581–592 (1976).

    Google Scholar 

  18. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firsov, The Physical Principles of Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

Download references

Authors

Additional information

Baikov Institute of Metallurgy, Academy of Sciences of the USSR, Moscow. Translated from Problemy Prochnosti, No. 9, pp. 44–49, September, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogan, I.S., Terent'ev, V.F. Fractography of static and fatigue fracture in molybdenum and its alloys. Strength Mater 10, 1037–1042 (1978). https://doi.org/10.1007/BF01523436

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01523436

Keywords

Navigation