Skip to main content
Log in

Optimization and limiting characteristics of CO2 lasers

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

It is shown that the limiting characteristics of CO2 lasers are determined mainly by two parameters: the specific power of the electric discharge, referred to the square of the active medium pressure, and the product of the pumping time and the gas pressure. An investigation is made of the dependence of the efficiency and the radiation pulse shape over a wide range of the parameters. For the first time it is noted that the energy from the lower laser level can be given to the upper vibrational states of the symmetric and deformed modes, which allows high radiation density, ∼0.2 J/cm3 · atm, to be achieved, as is shown by calculation. Because of energy redistribution in the asymmetric mode the limiting gain coefficient in C02 lasers is ∼0.12 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. N. G. Basov, É. M. Belenov, V. A. Danilychev, O. M. Kerimov, I. B. Kovsh, A. S. Podsosonnyi, and A. F. Suchkov, “Electroionization lasers,” Zh. Éksp. Teor. Fiz.,64, No. 1, 108 (1973).

    Google Scholar 

  2. Yu. V. Afonin, V. Byshevskii, A. G. Ponomarenko, R. I. Solukhin, and V. N. Tishchenko, “Investigation of the energy characteristics of high-power electroionization-type laser systems,” in: Proceedings of the Eleventh International Conference of Phenomena in Ionized Gases, Prague, Vol. 1 (1973), p. 166.

    Google Scholar 

  3. Yu. V. Afonin, W. Byszewski, A. G. Ponomarenko, R. I. Soloukhin, and V. N. Ticschenko, “Gain and power characteristics of an electron-beam-controlled discharge TEA CO2 laser,” Optics Comm.,10, No. 1, 11 (1974).

    Google Scholar 

  4. A. G. Ponomarenko, R. I. Solukhin, and V. N. Tishchenko, “Optimization and limiting energy characteristics of pulsed CO2 laser systems of electroionization and electric discharge type,” in: First All-Union School and Conference on the Use of Lasers in Mechanical Engineering and Other Areas of Technology and Physics of Gas Laser Development [in Russian], Nauka, Moscow (1974), p. 18.

    Google Scholar 

  5. V. Yu. Baranov, S. A. Golubev, S. S. Kingsep, I. V. Novobrantsev, V. D. Pismeny, V. P. Smirnov, A. M. Spector, A. N. Starostin, A. P. Streltsov, and E. P. Velikhov, “A study of combined discharge exciting a CO2 laser with a high-current electron beam,” in: Proceedings of the Eleventh International Conference on Phenomena in Ionized Gases, Prague, Vol. 1 (1973), p. 162.

    Google Scholar 

  6. A. M. Orishich, A. G. Ponomarenko, and R. I. Soloukhin, “Limiting energy characteristics of pulsed TEA CO2 lasers,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 89 (1975).

    Google Scholar 

  7. W. L. Nighan, “Electron energy distributions and collision rates in electrically excited N2, CO2, and CO,” Phys. Rev. A,2, No. 5, 1989 (1970).

    Google Scholar 

  8. A. N. Lobanov and A. F. Suchkov, “Distribution functions and electron energy balance in a CO2 electroionization laser,” Kvant. Elektron.,1, No. 7, 1527 (1974).

    Google Scholar 

  9. V. F. Gordeets, N. N. Sobolev, and A. A. Shelepin, “Kinetics of the physical processes in a CO2 laser,” Zh. Éksp. Teor. Fiz.,53, 1822 (1967).

    Google Scholar 

  10. N. G. Basov, V. G. Mikhailov, A. N. Oraevskii, and V. A. Shcheglov, “Achievement of molecular population inversions in supersonic flow of a binary gas in a nozzle,” Zh. Éksp. Teor. Fiz.,38, No. 12, 2031 (1968).

    Google Scholar 

  11. A. S. Biryukov and V. F. Gordeets, “Kinetic equations for vibrational energy relaxation in a mixture of polyatomic gases,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 29 (1969).

    Google Scholar 

  12. G. C. Vlases and W. M. Moeny, “Numerical modeling of pulsed electric CO2 lasers,” J. Appl. Phys.,43, No. 3, 1840 (1972).

    Google Scholar 

  13. S. J. Kast and C. Cason, “Performance comparison of pulsed discharge and electron-beam-controlled CO2 lasers,” J. Appl. Phys.,44, No. 4, 1631 (1973).

    Google Scholar 

  14. G. L. Schultz, “Vibrational excitation of N2, CO, and H2 by electron impact,” Phys. Rev. A,135, No. 4, 988 (1964).

    Google Scholar 

  15. Yu. V. Afonin, Yu. S. Zimin, and A. G. Ponomarenko, “A compact pulsed electroionized CO2 laser,” in: First All-Union School and Conference on Use of Lasers in Mechanical Engineering and Other Fields of Technology and Physical Processes of Gas Laser Development [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  16. S. Braun, Elementary Processes in a Gas-Discharge Plasma [in Russian], Gosatomizdat, Moscow (1961).

    Google Scholar 

  17. H. Reiter, Electron Traps and Breakdown in Gases [Russian translation], Inost. Lit., Moscow (1960).

    Google Scholar 

  18. G. A. Mesyats, Yu. N. Bychkov, V. V. Kremnev, Yu. N. Korolev, Yu. A. Kurbatov, and V. K. Savin, “High-pressure CO2 laser with preionization by means of a short duration electron beam,” Preprint Inst. Optiki Atmos., Sibirsk. Otd., Akad. Nauk SSSR, No. 2 (1972).

  19. C. A. Fenstermacher, M. J. Nutter, W. T. Lelano, and K. Boyer, “Electron-beam-controlled CO2 laser amplifiers,” Appl. Phys. Lett.,20, No. 2, 157 (1972).

    Google Scholar 

  20. C. H. H. Carmichael, R. K. Garnsworthy, and L. E. S. Mathias, “High gain at 10.6 μ from an electron-beam-controlled pulsed discharge,” Appl. Phys. Lett.,24, No. 12, 608 (1974).

    Google Scholar 

  21. N. G. Vasov, V. A. Danilychev, A. A. Ionin, I. B. Kovsh, and V. A. Sobolev, “Electroionization pulsed laser with radiation energy of 200,” Zh. Tekh. Fiz.,13, No. 11, 2357 (1973).

    Google Scholar 

  22. C. B. Moore, R. E. Wood, B. L. Hu, and J. T. Yardley, “Vibrational energy transfer in a CO2 laser,” J. Chem. Phys.,46, 4222 (1967).

    Google Scholar 

  23. A. S. Biryukov, V. K. Konyukhov, A. I. Lukovnikov, and R. I. Serikov, “Relaxation of the (0001) vibrational energy level of the CO2 molecule,” Zh. Éksp. Teor. Fiz.,66. No. 4, 1238 (1974).

    Google Scholar 

  24. W. A. Rosser, A. D. Wood, and E. T. Gerry, “Deactivation of vibrationally excited CO2 by collisions with CO2 or N2” J. Chem. Phys.,50, No. 11, 4996 (1969).

    Google Scholar 

  25. W. A. Rosser and E. T. Gerry, “Deexcitation of vibrationally excited CO2 (0001) by collisions with CO2, H2, NO2, and Cl2,” J. Chem. Phys.,54, No. 9, 4131 (1971).

    Google Scholar 

  26. C. K. Rhodes, M. J. Kelly, and A. Javan, “Collisional relaxation of the 1000 state in pure CO2,” J. Chem. Phys.,48, 5730 (1968).

    Google Scholar 

  27. E. G. Gebhardt and D. C. Smith, “Kinetic cooling of a gas by absorption of CO2 laser radiation,” Appl. Phys. Lett.,20, 129 (1972).

    Google Scholar 

  28. K. M. Merrill and R. C. Amme, “Deactivation of the CO2 bending mode by collisions with N2 and O2,” J. Chem. Phys.,51, No. 2, 844 (1969).

    Google Scholar 

  29. P. K. Cheo, “Effects of CO2, He, and N2 on the lifetimes of the 0001 and 1000 CO2 laser levels and on pulsed gain at 10.6,” J. Appl. Phys.,38, No. 9, 3563 (1967).

    Google Scholar 

  30. R. L. Taylor and S. Bitterman, “Survey of vibrational relaxation data for processes important in the CO2-N2 laser system,” Rev. Mod. Phys.,41, No. 1, 26 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 120–131, September–October, 1975.

The authors thank V. N. Vetlutskyi, A. V. Afonin, and A. M. Orishich for their help in the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponomarenko, A.G., Soloukhin, R.I. & Tishchenko, V.N. Optimization and limiting characteristics of CO2 lasers. J Appl Mech Tech Phys 16, 774–782 (1975). https://doi.org/10.1007/BF00854089

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00854089

Keywords

Navigation