Skip to main content
Log in

A statistical model of linear polymers in the amorphous state

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A statistical theory of polymer-solvent systems has been developed on the basis of a simple lattice model assuming wholly random packing of the linear chain molecules in the lattice. It is assumed that the entire system is placed in simple tension or compression. The applications of the model are discussed in relation to the construction of theories of polymer solutions, true and forced high elasticity, and phase transformations in polymer systems. As distinct from existing theories, the proposed model accounts for a number of important observable effects; the change in volume associated with the dissolving or diluting of a polymer, negative entropies and heats of mixing, deviations from the classical theory of high-elastic deformation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Flory, Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, 1953.

    Google Scholar 

  2. E. A. Di Marzio and J. H. Gibbs, “Chain stiffness and lattice theory of polymer phases,” J. Chem. Phys., vol. 28, no. 5, 1958.

    Google Scholar 

  3. E. A. Di Marzio, “Statistics of orientation effects in linear polymer molecules,” J. Chem. Phys., vol. 35, no. 2, 1961.

  4. P. J. Flory, “Statistical thermodynamics of semi-flexible chain molecules,” Proc. Roy. Soc., Ser. A, vol. 234, no. 1196, 1956.

  5. M. V. Vol'kenshtein, Configurational Statistics of Polymer Chains [in Russian], Izd-vo AN SSSR, Moscow-Leningrad, 1959.

    Google Scholar 

  6. C. Tanford, Physical Chemistry of Macromolecules [Russian translation], Khimiya, Moscow, 1966.

    Google Scholar 

  7. A. A. Tager, Physicochemistry of Polymers [in Russian], Goskhimizdat, Moscow, 1963.

    Google Scholar 

  8. Yu. A. Buevicch, “Variation of the structure of polymer solutions in a longitudinal hydrodynamic field,” PMTF [Journal of Applied Mechanics], no. 6, 1967.

  9. J. H. Gibbs and E. A. Di Marzio, “Nature of the glass transition and the glassy state,” J. Chem. Phys., vol. 28, no. 3, 1958.

  10. K. W. Scott and A. V. Tobolsky, “Statistical thermodynamics of a one dimensional polymer chain incorporating energy and entropy effects,” J. Colloid Sci., vol. 8, no. 4, 1953.

  11. M. V. Vol'kenshtein and O. B. Ptitsyn, “Internal rotation in polymer chains and their physical properties. II: Stretching of the polymer chain; III: Change in the internal energy of polymer chains during stretching,” Zh. tekhn. fiz., vol. 25, no. 4, 1955.

  12. D. Patterson and A. A. Tager, “Application of the principle of corresponding states to polymer solutions and the thermodynamics of solutions of polymeric glasses,” Vysokomolek. soedineniya, ser. A., vol. 9, no. 8, 1967.

  13. C. H. Baker, W. R. Brown, G. Gee, J. S. Rowlinson, D. Stubley, and R. E. Yeadon, “A study of the thermodynamic properties and phase equilibria of solutions of polyisobutylene in n-pentane,” Polymer, vol. 3, no. 2, 1962.

  14. G. Allen, C. Booth, W. R. Brown, G. Gee, G. Holden, M. N. Jones, W. D. Taylor, and G. R. Williamson “Studies in the thermodynamics of polymer-liquid systems, pt. 1; Natural rubber and polar liquids; pt. 2: A reassessment of published data; pt. 3: Polypropylene plus various ketones; pt. 4: Effect of incipient crystallinity on the swelling of polypropylene in diethyl ketone,” Polymer, vol. 5, no. 7, 1964.

  15. C. D. Myrat and J. S. Rowlinson, “The separation and fractionation of polystyrene at a lower critical solution point,” Polymer, vol. 6, no. 12, 1965.

  16. G. Delmas, D. Patterson, and D. Böhme, “Application of the Prigogine solution theory to the heats of mixing of some polymer-solvent systems,” Trans. Faraday Soc., vol. 58, no. 479, 1962.

  17. V. A. Kargin, “Role of structural effects in the formation of polymer properties,” Usp. khimii, vol. 35, no. 6, 1966.

  18. G. I. Barenblatt and V. N. Kalashnikov, “Effect on turbulence of super molecular structures in dilute polymer solutions,” Izv. AN SSSR, MZhG [Fluid Dynamics], no. 3, 1968.

  19. I. Prigogine, “The molecular theory of solutions,” Inter.-Sci. Publ., New York, 1957.

    Google Scholar 

  20. H. M. James and E. Guth, “Simple presentation of network theory of rubber with a discussion of other theories,” J. Polymer Sci., vol. 4, no. 2, 1949.

  21. A. Ciferri and P. J. Flory, “Stress-strain isotherm for polymer networks,” J. Appl. Phys., vol. 30, no. 10, 1959.

  22. A. Ciferri and J. J. Hermans, “Non-equilibrium effects in the stress-strain behavior of rubbers for the explanation of deviations from rubber elasticity theory,” J. Polymer Sci., ser. B, vol. 2, no. 12, 1964.

  23. S. Glasstone, K. Laidler, and H. Eyring, Theory of Rate Processes [Russian translation], IL, Moscow, 1948.

    Google Scholar 

  24. E. A. Di Marzio, “Contribution to a liquid-like theory of rubber elasticity,” J. Chem. Phys., vol. 36, no. 6, 1962.

  25. H. von Breuer and G. Rehage, “Zur Thermodynamik der glasigen Erstarrung,” Koll. Z. und Z. Polymere, vol. 216–217, p. 217, 1967.

    Google Scholar 

  26. K. von Ueberreiter, “Glasumwandlung und sekundäre Umwandlungen in Polymeren,” Koll. Z. und Z. Polymere, 216–217, p. 159, 1967.

    Google Scholar 

  27. É. I. Barg, N. N. Mel'teva, and D. M. Spitkovskii, “Effect of stress on the glass-transition temperature of polymers,” DAN SSSR, vol. 85, no. 5, 1952.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buevich, Y.A. A statistical model of linear polymers in the amorphous state. J Appl Mech Tech Phys 10, 55–71 (1969). https://doi.org/10.1007/BF00916253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00916253

Keywords

Navigation